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Ell BACKGROUND:

 The emerging and rapid progress of esports currently

lacks approaches for ensuring high-quality analytics to
augment performance in professional and amateur
esports teams.

The application of Artificial Intelligence (Al) and
Machine Learning (ML) approaches in the esports
domain, particularly in simulated racing can identify Key
Performance Indicators (KPIs) that indicate
performance.

Feature selection is a critical step in data analysis and
machine learning, referring to the reduction of input
variables and develop the best performing predictive
models.

Aim: Applying Machine Learning to explore and identify
the KPIs of Simulated Racing

EBRESULTS:
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Figure 2. Different performance level groups across drivers
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Figure 4. KPI in sim racing resulted from feature selection approach. The violin plots display the distribution of
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Figure 1. Proposed Feature Selection Approach to find KPIs in simulated racing
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importance for each metric. The greater the value (red), the greater the probability of shorter lap time.

“Speed” is the most contributing metrics, followed by “lateral acceleration”, “steering reversal rate”, and “lane deviation”.
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Figure 3. comparison of the performance of ML algorithms

The study highlights the promising use of Al and ML to classify
performance level in simulated racing, and determine most
Important metrics, enhancing sim racing knowledge and know
how.

By collecting 536 feature-rich telemetry data from 93
participants, we were able to group the obtained laps based on
the performance and identify the critical factors that
influenced driving performance during a lap.

The finding of this research might be used to improve the
effectiveness and efficiency of sim racing performance
including software tools to train the drivers.
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