
1 2

3 4

SOFTWARE CLONES:
− Pieces of code that are similar (syntactically or semantically)…
− May be a result of a cut and paste

THE PROBLEM:
− They can cause copyright issues;
− They can cause inherited maintenance issues;
− They can be difficult to find, given that evolve independently

(diverge) over time;

THE SOLUTION:
− We need to detect these diverging clones, at 1000MLOC+ scale

• Approaches for finding Type I/II clones are already
quite accurate and quite efficient;

• State-of-the-art NN approaches are showing more
promise for Type III/IV clones;

• But they rely on pairwise comparison of code
segments and do not scale well as that involves ~O(n2)
comparisons
• Oreo took nearly 1 day, 21 hours to work its way

through the standard benchmark in the field: BCB -
250 MLOC in Java

• We tried a Nearest Neighbour approach.

SSCD:

LLM-encoded vectors, where nearness of vectors reflects
code similarity (clones)

SSCD, with/without Remove-White-Space/Variable Anonymization
Pre-processings, with Active Learning and with state-of-the-art LLMs

Max Recall at a precision of >=0.2 (across a Huawei code-base and 8 OS systems: 362 MLOC):

Max Recall at a precision of >=0.2 (across the Huawei code-base and the 4 OS systems not used
for Active Learning):

Preliminary results of trialling newer LLMs on the Huawei-provided Benchmark

• Overall (and in Type 3 particularly), SSCD shows substantial improvement over
CCFinderX;

• And pre-processings show further significant improvement;
• Preliminary indications suggest that incorporation of newer LLMs will improve things

further.

Muslim Chochlov, Gul Ahmed, James Patten, Jim Buckley, David Gregg

LLM Size (Parameters) C F-score C++ F-score
Code T5 220M 85.04 90.45
CodeBERT 125M 77.16 83.33
GraphCodeBERT 125M 80.29 88.31
CuBERT 345M 97.14 95.6
Code T5+ 110M 99.29 97.04
SPT-Code 262M 97.84 92.77

Newer LLMs trialled on Huawei's 480KLOC dataset

1

	Slide 1

