

GLOCC: Giga-line Location of Code Clones

Muslim Chochlov, Gul Ahmed, James Patten, Jim Buckley, David Gregg

2

- Approaches for finding Type I/II clones are already quite accurate and quite efficient;
- State-of-the-art NN approaches are showing more promise for Type III/IV clones;
- But they rely on pairwise comparison of code segments and do not scale well as that involves $\sim O(n^2)$ comparisons
 - Oreo took nearly 1 day, 21 hours to work its way

- Pieces of code that are similar (syntactically or semantically)...
- May be a result of a cut and paste

THE PROBLEM:

- They can cause copyright issues;
- They can cause inherited maintenance issues;
- They can be difficult to find, given that evolve independently (diverge) over time;

THE SOLUTION:

- We need to detect these diverging clones, at 1000ML0C+ scale

³ SSCD:

4 SSCD, with/without Remove-White-Space/Variable Anonymization Pre-processings, with Active Learning and with state-of-the-art LLMs

Max Recall at a precision of >=0.2 (across a Huawei code-base and 8 OS systems: 362 MLOC):

>=0.2 Precision	Clones Identified by SSCD Variants (and CCFinderX – After filtering)					CCC: Jan Y Tabala		
	Candidates	True clones	Ranked Precision	T1	T2	тз	T4	(after filter)
SSCD	664	133		18 (15)	14 (14)	98 (14)	3 (2)	45
SSCD (RWS)	1390	279		21 (15)	66 (13)	180 (20)	12 (6)	54
SSCD (RWS + VA)	1496	300		20 (15)	55 (13)	205 (11)	20 (5)	44

Max Recall at a precision of >=0.2 (across the Huawei code-base and the 4 OS systems not used for Active Learning):

>=0.2 Precision	Clones Identified by SSCD Variants (and CCFinderX – After filtering)						CCC: ndor V Totolo	
	Candidates	True clones	Ranked Precision	T1	T2	Т3	T4	(after filter)
SSCD (RWS)	415	84		4 (3)	28 (4)	47 (6)	5 (2)	15
SSCD (AL)	895	179		4 (3)	43 (11)	121 (6)	11 (4)	24

Preliminary results of trialling newer LLMs on the Huawei-provided Benchmark

Newer LLMs trialled on Huawei's 480KLOC dataset							
LLM	Size (Parameters)	rameters) C F-score					
Code T5	220M	85.04	90.45				
CodeBERT	125M	77.16	83.33				
GraphCodeBERT	125M	80.29	88.31				
CuBERT	345M	97.14	95.6				
Code T5+	110M	99.29	97.04				
SPT-Code	262M	97.84	92.77				

through the standard benchmark in the field: BCB -250 MLOC in Java

We tried a Nearest Neighbour approach.

LLM-encoded vectors, where nearness of vectors reflects code similarity (clones)

- Overall (and in Type 3 particularly), SSCD shows substantial improvement over CCFinderX;
- And pre-processings show further significant improvement;
- Preliminary indications suggest that incorporation of newer LLMs will improve things further.

