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COLLABORATIVE DENSE VISUAL SLAM:
• Spatial understanding for multiple collaborating autonomous 

agents
• Agents work together to build and maintain a shared 

representation of their workspace

HYBRID SPARSE-DENSE MONOCULAR SLAM:
• Dense 3D visual mapping for automotive applications
• Combine sparse and dense SLAM approaches with CNN-based 

dense geometry prediction

DENSE VISUAL SLAM FOR FISHEYE CAMERAS:
• Extend hybrid SLAM architecture (2, above) to support wide FOV 

fisheye cameras within monocular dense SLAM pipeline

NERF-XR:
• Photorealistic novel view synthesis for near-field, surround-view 

visualisation in automotive applications
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1. Agents independently explore a shared 
workspace

2. Initially, each agent builds a separate 
submap of the environment.

3. A centralised mapping node searches for 
inter-map loop closures, i.e., overlap 

between each agents submap
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4. Overlapping submaps are brought into 
alignment and fused into a single global 

map of the environment, shared by all 
agents
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1. UnRectDepthNet 
predicts 2.5D depth 
map for each colour 

frame

2. ORBSLAM-3 performs 
sparse, feature-based 

SLAM: suitable for fast, 
wide-baseline camera 

motion

3. The sparse pose is brought into tight alignment with the dense 
model via a 6-DOF optimisation based on a joint photometric and 2.5D 

geometric cost function

4. RGB-D frames are 
fused into a dense surfel 

model

Loop closure constraints 
generated by ORBSLAM are 
reflected in the dense surfel 
map via a deformation graph 

of affine transforms 

L. Gallagher, G. Sistu, J. Horgan, and J. B. McDonald. A system for dense monocular mapping with a fisheye camera. In Proceedings of the 
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1. Fisheye depth estimation CNN  builds on PackNet to support Kannala-Brandt camera model 
without any rectification (Left). Example results on challenging inputs (Right).
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2.    Scale ambiguous ORBSLAM map needs to be aligned to the metric-scale of the predicted 
depth maps.  We do so by estimating the scale ratio between the predicted dense depth map 
and a sparse depth map rendered from ORBSLAM, averaged over a rolling buffer of frames to 

account for scale drift

2. Can we use this representation to 
improve over existing visualization 

approach based on fixed bowl geometry 
which results in visualization artefacts?

KITTI-360 sensor set-up

3. We use both KITTI-360 fisheye cameras to 
construct a surround view model in the periphery of 

the car

Surround-view NeRFacto Training W/ KITTI-360
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1. NeRFs represent the radiance field of a 
scene in the weights of an MLP. Weights are 

optimized via differentiable rendering
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