
Lero Technical Report 2016 K.J. Stol

Copyright © 2016 Klaas-Jan Stol 1

Managing Software Sourcing
with Alternative Workforces:

A Holistic Overview and
Research Agenda

Klaas-Jan Stol

Lero—the Irish Software Research Centre
University of Limerick

Limerick, Ireland
klaas-jan.stol@lero.ie

Working Paper – March 2016

Abstract. Trends such as the Internet of Things (IoT), smart devices, and
software defined * (where ‘*’ can represent networking, infrastructure,
enterprise) cause a dramatic and ever-increasing need for additional
software to leverage these advances. To illustrate: if the source code
contained in a 1995 Mercedes S-class, had been printed the paper stack
would be 3m high; by 2005, the stack was already 50 metres high, and in
2020, it is expected to reach a height of 830 metres, as high as the Burj
Khalifa, the world’s tallest building [Schneider 2015]. It is becoming
increasingly clear that software organizations cannot deliver high-quality
software at such a rapid pace while also delivering innovative and creative
solutions. Consequently, organizations are looking at alternative software
approaches, such as open source, inner source (adopting the open source
development model inside organizations), and crowdsourcing. Expertise
and solutions to software development problems is increasingly sourced
from developer-specific social networks such as StackOverflow. However,
these new collaboration models introduce new and significant challenges.
In managing these alternative workforces, issues such as planning, quality
control, and governance are far more challenging than in traditional
settings.

Lero Technical Report 2016 K.J. Stol

Copyright © 2016 Klaas-Jan Stol 2

1 INTRODUCTION

Trends such as the Internet of Things (IoT), smart devices, and software
defined * (where ‘*’ can represent networking, infrastructure, enterprise)
cause a dramatic and ever-increasing need for additional software to
leverage these advances. To illustrate: if the source code contained in a
1995 Mercedes S-class, had been printed the paper stack would be 3m
high; by 2005, the stack was already 50 meters high, and in 2020, it is
expected to reach a height of 830 meters, as high as the Burj Khalifa, the
world’s tallest building [Schneider 2015]. It is becoming increasingly clear
that software organizations cannot deliver high-quality software at such a
rapid pace while also delivering innovative and creative solutions.
Consequently, organizations are looking at alternative software
approaches, such as open source, inner source (adopting the open source
development model inside organizations), and crowdsourcing. Expertise
and solutions to software development problems is increasingly sourced
from developer-specific social networks such as StackOverflow. However,
these new collaboration models introduce new and significant challenges.
In managing these alternative workforces, issues such as planning, quality
control, and governance are far more challenging than in traditional
settings. This research program will allow organizations to use these
alternative workforces more effectively and efficiently. Studies with both
Irish and global collaborators will result in analytical frameworks, models
and metrics to enable organizations to make better-informed decisions
and build long-lasting sustainable relationships with alternative
workforces which in turn can offer innovation and creativity.

2 SOFTWARE DEVELOPMENT COLLABORATIONS

Software engineering increasingly takes place in organizations and
communities involving many people [Tamburri et al. 2013; Yan & Wang
2013]. In addition to traditional approaches such as in-house software
development (insourcing), there is an increasing trend towards
globalization with a focus on collaborations with and within communities,
which may be known or anonymous. Open Source Software (OSS) in
particular has had a dramatic impact on the software industry. OSS was
initially approached with much skepticism and fear, and disregarded as a
commercially viable alternative [Fitzgerald 2006]. Today, many
organizations adopt OSS in multiple ways and increasingly rely on OSS
communities for a steady stream of updates for open source products.
For example, in the 1990s Microsoft compared OSS development to

Lero Technical Report 2016 K.J. Stol

Copyright © 2016 Klaas-Jan Stol 3

communism in an attempt to discredit this emerging phenomenon [Feller
& Fitzgerald 2002].

However, in the past few months, Microsoft announced its first Linux-
based operating system Azure Cloud Switch. Open-source-inspired
strategies such as crowdsourcing [Stol & Fitzgerald 2014] and
innersourcing [Stol et al. 2014] are also gaining considerable attention and
are becoming viable approaches [Yan & Wang 2013]. Software ecosystems
such as Google’s Android platform (and third-party apps) are widespread
[Jansen et al. 2013].

Fig. 1 presents our analysis of the various sourcing strategies from a
customer’s perspective. We position these in a circumplex based on two
dimensions: control of the product offering and the extent to which a
workforce is known. One popular definition of control in the literature
characterizes it as any attempt to align behavior with organizational
objectives [Kirsch 1996]. Quadrant I contains traditional approaches to
software sourcing: insourcing is in-house software development with a
clearly defined workforce, and ‘traditional’ outsourcing involves a
workforce that can initially be characterized as ‘unknown’ since
outsourcing suppliers are often a black-box for customers. Of course,
outsourcing workforces are more known than in, for example, open
source, as a contract must be signed with a known entity, and, given
sufficient time a relationship and trust can develop if an outsourcing
supplier is used for an extensive duration. In both Quadrant I strategies
customers have a considerable degree of control.

Quadrant II contains single-vendor open source [Riehle 2011]; these are
OSS projects whereby one organization owns and controls an OSS
product. Examples of this are MySQL and Eclipse. Also in Quadrant II is
inner-sourcing, a scenario in which an organization adopts OSS
development principles for its internal development [Stol et al. 2014]. This
approach is gaining considerable interest from companies such as
Allstate, PayPal, Rolls-Royce, Samsung and Sony Mobile [Stol et al. 2014].
Inner source facilitates ad-hoc collaborations between organizational
units that otherwise would not collaborate. Because inner source relies on
motivated individuals and self-selection of tasks, an organization has
limited control (by design) over the software being developed—the
purpose of inner source is to create a culture of transparency and
collaborations; management’s role is that of empowerment.

Lero Technical Report 2016 K.J. Stol

Copyright © 2016 Klaas-Jan Stol 4

Quadrant III contains third-party vendors and community OSS. The former
happens in software ecosystems [Jansen et al. 2013], whereby
independent parties offer extensions or new functionality (Apps). Platform
providers have limited control over the software developed; banning
offerings to a platform (e.g. through an ‘app store’) is one way to exert
such control. Such vendors are necessarily known as they usually
advertise their offerings. Community OSS refers to ‘traditional’ open
source [Riehle 2011], that is, OSS projects without any formal participation
of firms (or non-profits) that can exert control over what is being
developed. The workforce is very much unknown since developers are
commonly using pseudonyms and little is known about specific
individuals. The Debian Project (a Linux distribution) is one example of
this which has a strong emphasis on the free/libre philosophy without
corporate involvement [Michlmayr et al. 2015].

Sponsored OSS (quadrant IV) is similar to the single-vendor open source
strategy, with the exception that an organization is merely involved as a
co-developing party, and has no exclusive ownership, and therefore has

Community
Open Source

Single-
vendor
Open
Source

Inner-
sourcing

Insourcing

Crowdsourcing

Extensive
Control

IV

IV

I I

IIIIII

II

II

Limited
Control

Known workforce Unknown workforce

Sponsored
Open Source

Outsourcing

Third-party
vendors

Figure 1. Sourcing strategies for software development

Lero Technical Report 2016 K.J. Stol

Copyright © 2016 Klaas-Jan Stol 5

limited control over the project as a whole. An example of this strategy is
the Linux kernel—one study suggests that over 80% of all kernel
development is done by paid developers [Corbet et al. 2013]. Next in
quadrant IV is crowdsourcing, which is also inspired by open source [Stol
& Fitzgerald 2014]. In crowdsourcing there is also an unknown workforce,
at least up to the point that any post-delivery payments are made to the
‘winner’ of a crowdsourcing competition—even after payment, a customer
will learn very little about a ‘supplier.’ In such a case a crowdsourcing
organization has a significant level of control in terms of required features
in a delivered software. Another form of crowdsourcing is bounty-
sourcing, whereby a sponsor offers a bounty to implement or fix a specific
feature in an OSS project. Internal crowdsourcing is another variant
[Zuchowski et al. 2016].

In practice, an organization may face a mix of several strategies to
develop software. For example, the OpenStack project (offering software
for managing cloud infrastructure), involving several global companies
such as EMC, HP and Intel, is a sponsored OSS project [Gonzalez-
Barahona et al. 2013]; together these companies have a considerable level
of (collective) control over the project, similar to a single-vendor OSS
project.

There is a considerable body of knowledge on traditional approaches (in-
/outsourcing), hence this research programme focuses on the remaining
strategies in quadrants II-IV. A recent book on collaborative software
development [Mistrik et al. 2010] presents a snapshot of the advances
made in recent years, but most studies on collaborations tend to be
among teams whose mutual relationships are well defined (i.e. not
unknown and with defined control mechanisms). Organizations are
increasingly engaging with such alternative developer communities [e.g.,
Fitzgerald 2006; Yan & Wang 2013, Teixeira 2014], on which they can exert
different levels of control, and may or may not know anything about.
These two dimensions, control, and extent to which a workforce is known,
are guiding in this research.

Most of the research on collaborative software development tends to
focus on collaborations within teams, between teams and among
organizations [Mistrik et al. 2010]. In each of these scenarios, developers
are employed, and are thus known and ‘controllable’ by their respective
organizations. The proposed research focuses on what we call alternative
workforces, which vary in much more dramatic ways than the more
traditional workforces described above. Some but not all developers may
be paid, developers may not be aware of each other (e.g. in a competition-

Lero Technical Report 2016 K.J. Stol

Copyright © 2016 Klaas-Jan Stol 6

based crowdsourcing setting, but also in open source) and the motivation
and goals of developers may vary widely as well.

Alternative modes of software development such as open source, inner
source and crowdsourcing offer several benefits. For example, large
communities may benefit from the fact that many developers are able to
review the code—this is often referred to as Linus’s Law (‘many eyeballs
make all bugs shallow’) [Fitzgerald 2006]. Furthermore, inner source can
significantly help organizations in ensuring timely delivery of their
products to the market; business units that find critical defects in a shared
component shortly before a major release, can now fix issues themselves
(as inner source offers access to all source code), rather than being
dependent on the owner of that component [Stol & Fitzgerald 2015]. All
three main modes listed above have the potential for creative, innovative
or quality-improving solutions [Stol & Fitzgerald 2015].

Much research on open source and derived initiatives (i.e. inner source,
crowdsourcing) focuses on initial adoption, but there is a paucity of
research on sustainability of these initiatives. Key questions are: How can
sourcing strategies be sustained if an organization has little influence on
external workforces? And how can organizations build up sustainable
relationships with unknown workforces?

The control dimension raises issues such as: governance approaches;
ownership of innovation and IP; mechanisms to exert control such as
payments; reputation of an actor in community-based development;
conflict control and resolution; leadership and power-shifts. For example,
employees who contribute to OSS projects on behalf of their employer
build relationships and reputations with those communities that are
partly ‘personal’. If an employee leaves his/her current employer for a
different one, the firm will partially lose this investment in these OSS
projects [Henkel 2008]. OSS communities may also suffer from internal
disagreements about the future of a project, which could cause ‘forks’ of
projects, which greatly affects a project’s sustainability [Gamalielson &
Lundell 2014] because forking of a project may split a community of
developers, jeopardizing a project’s sustainability. Conflict negotiation has
also been studied by Scacchi and colleagues [Elliott & Scacchi 2003; Jensen
& Scacchi 2005]. Organizations start inner source initiatives to emulate the
successes of open source communities internally—and such programmes
require a lack of control and instead rely on empowerment of an internal
workforce to self-select those tasks that they deem most useful. However,
it is unclear how an organization’s product strategies (driven by market

Lero Technical Report 2016 K.J. Stol

Copyright © 2016 Klaas-Jan Stol 7

trends and demands) can be sustained while relying on such an
‘uncontrollable’ model of software development.

The extent of to which a workforce is known or unknown raises issues
such as: understanding goals of workforces, their motivations, beliefs,
expectations, awareness, and norms of the workforce (as a
heterogeneous group, i.e., these issues may vary per individual) versus
those of a customer seeking to ‘source’ software; and the ability to retain
knowledge and intellectual resources. One example of how these issues
can disturb relationships between a ‘customer’ and ‘supplier’ is a
misalignment of goals or motivation; OSS projects may be started by
altruistic individuals, not to offer a fully functional and supported high-
quality software solution. Organizations may have different expectations
and assumptions. In a crowdsourcing scenario, the fleeting relationship
with ‘crowd’ developers is a major concern from a knowledge
management perspective [Stol & Fitzgerald 2014]. Thus, interacting and
collaborating with an unknown workforce raises significant challenges for
organizations whose aim it is to deliver commercial software products to a
market or their clients.

While research exists on firm involvement in open source, inner source
and crowdsourcing, this area is still in its nascent phase, and there is no
integral research program that addresses the issues identified above.

3 ACKNOWLEDGMENTS

This work was supported, in part, by Science Foundation Ireland grant
13/RC/2094 and co-funded under the European Regional Development
Fund through the Southern & Eastern Regional Operational Programme
to Lero—the Irish Software Research Centre (www.lero.ie), Enterprise
Ireland under grant IR/2013/0021 to ITEA2-SCALARE (www.scalare.org),
and the Irish Research Council (www.research.ie).

Lero Technical Report 2016 K.J. Stol

Copyright © 2016 Klaas-Jan Stol 8

4 REFERENCES

PJ Agerfalk, B Fitzgerald, K Stol. 2015. Software Sourcing in the Age of
Open, Springer

A Capiluppi, K Stol, C Boldyreff. 2012. Exploring the Role of Commercial
Stakeholders in Open Source Software Evolution. Proc. International
Conference on Open Source Systems. Springer.

J Corbet, G Kroah-Hartman, A McPherson. 2013. Linux Kernel
Development: How Fast It is Going, Who is Doing It, What They are Doing,
and Who is Sponsoring It.

M Elliott, W Scacchi. 2002. Communicating and Mitigating Conflict in Open
Source Software Development Projects. Institute for Software Research,
UC, Irvine

J Feller & B Fitzgerald 2002. Understanding Open Source Software
Development. Addison-Wesley B Fitzgerald. 2006. The Transformation of
Open Source Software. MIS Quarterly 30(3)

J Gamalielsson, B Lundell. 2014. Sustainability of Open Source software
communities beyond a fork: How and why has the LibreOffice project
evolved? J Sys Soft 89, 128-145

JM Gonzalez-Barahona et al. 2013. Understanding How Companies
Interact with Free Software Communities. IEEE Software 30(5)

VK Gurbani et al. 2006. A Case Study of a Corporate Open Source
Development Model. Proc. ICSE J Henkel 2008. Champions of revealing—
the role of open source developers in commercial firms. Industrial and
Corporate Change, 18(3), 435–471

S Jansen, S Brinkkemper, M Cusumano (Eds.) 2013. Software Ecosystems:
Analyzing and Managing

Business Networks in the Software Industry. Edward Elgar Press.

C Jensen, W Scacchi. 2005. Collaboration, Leadership, Control, and Conflict
Negotiation and the Netbeans.org Open Source Software Development
Community. Proc. HICSS 2005

E Kalliamvakou, D Damian, K Blincoe, L Singer and D German. 2014. Open
Source-Style Collaborative Development Practices in Commercial Projects
Using GitHub. Proc. ICSE

Lero Technical Report 2016 K.J. Stol

Copyright © 2016 Klaas-Jan Stol 9

R Kazman, HM Chen. 2009. The metropolis model a new Logic for
Development of crowdsourced systems. Communications of the ACM
52(7)

L Kirsch. 1996. The Management of Complex Tasks in Organizations.
Organization Science 7(1)

S Krishnamurthy, S Ou, AK Tripathi. 2014. Acceptance of monetary
rewards in open source software development. Research Policy. 43.

K Lakhani, RG Wolf. 2003. Why Hackers Do What They Do: Understanding
Motivation and Effort in Free/Open Source Software Projects. MIT Sloan
Working Paper

TD LaToza et al. 2015. Borrowing from the Crowd: A Study of
Recombination in Software Design Competitions. Proc. International
Conference on Software Engineering, 551-562

M Michlmayr, B Fitzgerald, K Stol. 2015. Why and How Open Source
Projects should adopt Time-Based Releases. IEEE Software 32(2).

I Mistrík, J Grundy, A van der Hoek, J Whitehead (Eds.). 2010. Collaborative
Software Engineering, Springer, New York, pp. 307–328.

D Riehle. 2011. Controlling and Steering Open Source Projects. Computer
44(7)

W Scacchi. 2004. Free and open source development practices in the
game community. IEEE Software 21(1)

M Schaarschmidt et al. 2015. How do firms influence open source
software communities? Inf&Org 25 J Schneider 2015. Software-
Innovations as key driver for the Green, Connected and Autonomous
mobility. ARTEMIS-IA/ITEA-Co-Summit. https://itea3.org/co-summit-
2015/presentations-1.html

K Stol et al. 2014. Key Factors for Adopting Inner Source. ACM
Transactions on Software Engineering and Methodology 23(2)

K Stol, B Fitzgerald. 2014. Two’s Company, Three’s a Crowd: A Case Study
of Crowdsourcing Software Development. Proc. ICSE’14, Hyderabad, India.

D Tamburri, P Lago, H van Vliet. 2013. Organizational Social Structures for
Software Engineering. ACM Computing Surveys 46(1)

Lero Technical Report 2016 K.J. Stol

Copyright © 2016 Klaas-Jan Stol 10

J Teixeira. 2014. Understanding Coopetition in the Open-Source Arena:
The Cases of WebKit and OpenStack Proc. OpenSym’14, Berlin, Germany.

J Wesselius. 2008. The Bazaar inside the Cathedral. IEEE Software 25(3)

J Yan & X Wang. 2013. From Open Source to Commercial Software
Development. ICIS 2013.

O Zuchowski et al. 2016. Internal Crowdsourcing: Conceptual Framework,
Structured Review and Research Agenda. Journal of Information
Technology. Forthcoming.

