
Lero Technical Report No.TR 2018 06 - Challenges and Recommended Practices for
Software Architecting in Global Software Development

Outi Sievi-Kortea, Sarah Beechamb,∗, Ita Richardsonb

aTampere University of Technology, Laboratory of Pervasive Computing, Korkeakoulunkatu 1, P.O.Box 553, 33101 Tampere, Finland.
bLero, the Irish Software Engineering Research Centre, University of Limerick, Ireland.

Abstract

Context: Global software development (GSD), although now a norm in the software industry, carries with it enormous
communication challenges. Careful management of task allocation across global development teams will alleviate some
communication challenges. Deciding how the various development tasks are separated is the responsibility of the software
architect, and occurs when the software is designed.
Objective: The current literature does not provide a cohesive picture of how the distributed nature of software devel-
opment is taken into account during the design phase: what to avoid, and what works in practice. The objective of this
paper is to gain an understanding of software architecting in the context of GSD, in order to develop a framework of
challenges and solutions that can be applied in both research and practice.
Method: We conducted a systematic literature review (SLR) that synthesises (i) challenges GSD imposes on software
architecture design, and (ii) recommended practices to alleviate these challenges.
Results: We produced a comprehensive set of guidelines for performing software architecture design in GSD based
on 55 selected studies. Our framework comprises nine key challenges with 28 related concerns, and nine recommended
practices, with 22 related concerns for software architecture design in GSD. These challenges and practices were mapped
to a thematic conceptual model with the following concepts: Organization (Structure and Resources), Ways of Working
(Architecture Knowledge Management, Change Management and Quality Management), Design Practices, Modularity
and Task Allocation.
Conclusion: The synthesis of findings resulted in a thematic conceptual model of the problem area, a mapping of
the key challenges to practices, and a concern framework providing concrete questions to aid the design process in a
distributed setting. This is a first step in creating more concrete architecture design practices and guidelines.

Keywords: global software development, software architecture, software design, design practice, systematic literature
review

1. Introduction

Global software development (GSD) can be defined as
”software work undertaken at geographically separated lo-
cations across national boundaries in a coordinated fashion
involving real time (synchronous) and asynchronous inter-
action” [1]. As companies are constantly seeking more
ways to save on expenses, to expand and to find a larger
skills pool, there has been an increase in the number be-
coming involved in GSD through outsourcing and the cre-
ation of development divisions in developing economies.
With distribution comes distance in its many forms, which
particularly affects communication and how employees are
able to work together on the same task. Thus, allocating
work in such a distributed setting becomes much more

∗Corresponding author
Email addresses: outi.sievi-korte@tut.fi

(Outi Sievi-Korte), sarah.beecham@lero.ie (Sarah Beecham),
ita.richardson@lero.ie (Ita Richardson)

challenging when compared to collocated software devel-
opment.

One of the key issues affecting how work is allocated
to the distributed teams is the design of software archi-
tecture [3, 2]. The close structural dependency of the
software architecture and the developing organization was
already formulated as early as 1968 by Conway [4]: orga-
nizations which design systems (in the broad sense used
here) are constrained to produce designs which are copies
of the communication structures of these organizations.
Conway’s law has since been investigated in practice, most
recently by, e.g., de Santana et al. [5], Bano et al. [6], and
Imtiaz and Ikram [7], who all confirm that architecting
practices follow Conway’s law in GSD projects. However,
researchers also raise the issues of how strict communi-
cation structures may actually isolate teams (that may
appear closely linked otherwise) [6], and how the role of
expertise should also be considered when allocating tasks
[7].

In this study we conduct a review of the literature to

Preprint submitted to Elsevier September 14, 2018



examine whether it is necessary for architectural design to
take into account the distributed nature of development
work. The literature suggests that there are several dif-
ferences in how software is developed in collocated teams,
as opposed to distributed teams. However, the literature
is unclear as to whether these differences impact design
decisions.

Addressing organizational constraints - such as how
communication is structured in reality – is especially cru-
cial in GSD: the architecture should be such that it allows
the sensible distribution of the implementation work to dif-
ferent persons, teams, and sites available for the project.
In the optimal case, all the resources reserved for this work
are utilized to their full potential [8], and the work is dis-
tributed in such a way that the communication overhead
[9] caused by team distribution is minimized. However,
such optimization is difficult to achieve due to the many
challenges involved around distributed development. Fur-
thermore, the level at which a software architect can ac-
tually consider all organizational factors varies due to de-
mands set by functional requirements.

Thus, software architecture design is one of the most
challenging tasks in the development of software systems
[10]. In addition to considering organizational constraints,
such as the aforementioned aspects, the architect’s pri-
mary goal is to design a system that fulfills the given func-
tional requirements. Furthermore, the architecture of a
software system is the main vehicle to actualize the qual-
ity requirements of the system, thus directly dictating the
quality properties of the product.

It is commonly acknowledged that best practices for
software architecture design comprise loosely coupled com-
ponents with well-defined interfaces [2]. Loose coupling
follows ideas regarding modularization, information hid-
ing, well-defined interfaces, and design by decisions (rather
than functional sequence), given as recommendations for
software design already during the 1970s by Parnas [11, 12,
13]. Parnas suggested that these practices aid in achiev-
ing software that is easier for new developers to understand
and existing developers to modify and extend reducing the
need to communicate with each other.

The assumption is that making components as inde-
pendently implementable as possible would reduce the need
for inter-team communication, and thus ease GSD related
challenges. But is it that simple? Does practice follow
theory in actual cases? In an empirical study conducted
by Mustapic et al. [14], practitioners recognize the need
to tailor their architectural design practices to take into
account the complexity of implementing software across
different geographic locations. Participants in this study
warn: ”We have seen examples of distributed development
not being taken into account, this resulting in less than op-
timal architectural support for the process.” Furthermore,
Kwan et al. [15] show that the communication structure
is more linked to the task structure of the system than
to the actual component structure of the architecture - if
tasks span across many components, are the dependencies

between tasks recognized early enough in GSD?
So, how should the architectural design take into ac-

count the distributed nature of the development work?
What kind of practices exist that can support distributed
development? What are the GSD related challenges that
are not as obvious as work allocation which need to be ad-
dressed while architecting software? Our goal in this study
is to present answers to these questions by performing a
systematic literature review (SLR).

This paper is organized as follows. In Section 2 we
present background on GSD and software architecture as
well as a brief overview of the related literature which high-
lights the need for our SLR. Our review methodology is
presented in Section 3. The results of the SLR are given
in Section 4, and in Section 5 we discuss the findings and
provide practical checklists. Finally, conclusions and fu-
ture work are given in Section 6.

2. Background and Related Work

In this Section we will cover relevant background on
the topics of this study, namely global software develop-
ment (GSD): its drivers and challenges and particularly
the role of software architecture in a GSD context. We
then look more deeply into software architecture and par-
ticularly its design, and finally, we discuss related work
regarding research done in designing software architecture
in GSD. Thus, this section focuses on the problem in GSD
architectural design, leading us to construct our research
questions that drive our SLR.

2.1. Global Software Development

Global software development has grown from a phe-
nomenon to a paradigm in the past ten years. The main
reasons behind distributing work to different sites across
the globe are cost savings, access to larger skills pool, re-
duced time to market and proximity to customer. Other
benefits such as shared best practices and innovations and
improved task modularization also accrue [16]. However,
there are many challenges within GSD that prohibit com-
panies from realizing these expected benefits. Further-
more, a systematic review revealed that a clear major-
ity of empirical studies in GSD are actually problem re-
ports [17] rather than success stories. Based on the study
by Ó Conchúir et al. [18], the expectations that shared
best practices would spread and increase innovation ap-
pear mythical. Also, they note that many of the most
common expected benefits have only been partially real-
ized. For example, an expected gain from GSD is utilizing
time zone differences to increase speed and reduce time to
market. However, while some positive results have been
achieved using well thought out processes [19, 20, 21, 22],
Ó Conchúir et al. [18] found that these benefits are often
mythical.

The reasons behind poor outcomes of distributed pro-
jects are largely due to the many challenges brought by the

2



three dimensions of distance - temporal distance (different
time zones), geographical distance (physical distance be-
tween people), and socio-cultural distance (different ways
of working, language, interpretation issues, etc.) [23, 24].
The challenges that distance brings are mainly due to in-
creased effort required for communication, coordination
and control [24]. For example, consider temporal distance.
Due to time-zone differences, communication is in many
cases asynchronous. Emails and even instant messages get
answered with delay, and phone calls may not be made
during office hours due to non-overlap of office hours be-
tween the sites. This results in delays in product devel-
opment, rather than being able to effectively utilize the
time zone difference to the company’s advantage – the
so called follow-the-sun method (FTS) [25]. If correctly
managed processes are in place, FTS may be a solution in
speeding the development, but coordination of the project
requires specific practices developed particularly for FTS
[20, 21, 22]. Furthermore, coordination, to support the
division of work, is challenging due to possible delays, in-
tegration issues and missing skills. The dependencies be-
tween tasks need to be considered even more carefully than
in a collocated project.

The challenges brought about by global distance are
well recognized and documented in the GSD literature;
as are the associated solutions to the distance problem.
Distance mostly affects the soft aspects regarding teams
and project management, and the proposed solutions often
consider practices and processes rather than technical as-
pects [26, 27]. Research preference towards project/ engi-
neering management is also clearly seen in tertiary studies
of literature reviews of the field [28, 8]. Suggested practices
include increasing traveling between sites, choosing sites
in culturally similar locations, having a working infras-
tructure, and having a face-to-face kick-off of the project
[19, 23, 29, 26]. On a larger scale, one success factor is sim-
ply that management must correctly identify the reasons
for entering distributed development in the first place. A
review showed that, in most cases, the reasons for going
into GSD were actually unclear or irrelevant to the project
[17]. Other studies showed that a company’s success could
be achieved when changes are based on the company’s ac-
tual needs, and when methodologies and technologies used
are given due consideration [30, 31].

The role of (software) product architecture is rarely
brought to the fore when discussing challenges in GSD.
Nonetheless, it is the main vehicle for determining the task
structure, which is especially critical in GSD. The archi-
tect’s key role in GSD is noted by Herbsleb [32], which was
supported later by Britto et al. [33]. Herbsleb discusses
how architectural design affects coordination and guides
developers. He points out that software architects do not
only design the structure of the product, but they also de-
sign the task dependencies among the teams designing and
building the system. These dependencies have a straight-
forward effect on required communication between these
teams. Architects should, in fact, be able to measure how

well the given design fits the organization who are devel-
oping it. Similarly, Noll et al. [26] point out the need for
a modular product architecture in order to reduce com-
munication overhead. Babar and Lescher [30] also raise
software architecture as a key strategy for success in a
GSD project, as the architecture, and particularly how it
answers to quality demands, and determines dependencies.

2.2. Software Architecture

Software architecture is defined by the ISO/IEC/IEEE
42010:2011 standard [34] as ”fundamental concepts or prop-
erties of a system in its environment embodied in its ele-
ments, relationships, and in the principles of its design and
evolution”. Thus, software architecture design involves the
definition of such elements and their relationships based on
certain agreed principles. These elements are then given
in a software architecture description, which essentially
documents the decisions and the elements making the ar-
chitecture.

Software architecture design was originally fairly un-
standardized, and the need for quality architecture design
was not recognized until closer to the 21st century [35].
For example, architecture descriptions took time to evolve
from simple boxes and lines to more complex and stan-
dardized formats [35]. Ever since the boxes and lines era,
the two key concepts in software architecture have been
the separation of the system to entities (the boxes) that
fulfill the functional requirements of a system, and the
interaction (lines) between these entities. Moving on to
component-based design in 2000, it has become increas-
ingly common that at least one architecture view is made
where the system is given in terms of components and
the relationships between them [36]. Usage relationships
are particularly important to describe, as they dictate the
need for interfaces - what parts of a components func-
tionality are made available for others to use? Separating
tasks into components and having well-defined interfaces
to increase modularization [11, 12, 13] would allow devel-
opers to work more independently, decreasing the need for
communication between teams developing different com-
ponents. To some extent, this follows Conway’s law [4] in
which software architecture design should reflect the com-
munication structures of the organization. Herbsleb and
Grinter [37], when discussing GSD, explicitly recommend
following Conway’s law: ”Attend to Conway’s Law: Have
a good, modular design and use it as the basis for assign-
ing work to different sites. The more cleanly separated the
modules, the more likely the organization can successfully
develop them at different sites.” If the architecture is not
designed with the organization in mind, then it is natural
that the organizational structure will be modified to suit
the architecture (as suggested by recent work [38]), as the
component dependencies will greatly dictate communica-
tion needs between different teams.

The most common practices and recommended solu-
tions for certain recurring problems in architecture design

3



have been catalogued in various sources and forms. Soft-
ware architecture styles, for instance, describe very high-
level choices on how a system is to be implemented [39].
A software architecture can take various forms, for exam-
ple, a layered or a pipeline typed structure, and interac-
tions can be, for example, message-based [42] or service-
based, implemented following the principles of SOA(P)
[40], the RESTful approach [41], or applying the most
recent trend of chopping functions to so-called microser-
vices [43, 44]. The microservice approach has particu-
larly evolved from the demands of increasing use of cloud
computing [45, 46] and following *aaS (as a Service) ap-
proaches, where there is no single composition of software
for one particular (group of) user(s), but flexibility is a
must.

Common approaches are also product line architectures
[10] and framework type systems [47], which enable large
reuse of existing structures with only a limited number
of exchangeable components to tailor the system to each
customers specific needs. Lower-level principles called de-
sign patterns have also been recorded for different types of
systems (see, e.g., Gamma et al. [48], Hohpe et al. [49],
Schmidt et al. [50]), and architecture design can even be
pattern-driven [51].

No matter what solutions are chosen, there is always a
decision behind that choice. Software architecture design
has, in fact, recently been focusing more on the decisions
and the relationships between them [44, 52]. In a decision-
centered approach, intangible concerns, such as what pro-
gramming language or messaging protocol to use, or what
kind of open source components to select, can be recorded
and their relationships and effect on the code be tracked
more easily. New approaches to software architecture re-
views or evaluations are targeted more on such decisions,
rather than expecting low-level component diagrams of a
system [53]. Decisions made during the architecture de-
sign are also closely tied to the skills that are required to
implement the architecture. Resources are a significant
driving force in architecture design - if there is no exper-
tise in certain technologies or solutions, they are unlikely
to be selected or used as the primary solution, even if they
would be the best solution if the skill was available.

Finally, architecture design decisions, driven by con-
cerns, are evaluated against the non-functional require-
ments of a system. These are mostly associated with
quality attributes [54]. In other words, a software sys-
tem can be implemented in many ways to fulfill its func-
tional requirements, but in order to fulfill the quality re-
quirements, skillful architecture design is critical. Archi-
tectural choices dictate to a wide extent how the system re-
sponds to quality requirements. There are several quality-
driven design approaches, one of the most notable ones be-
ing quality attribute-oriented software architecture design
method (QASAR) as presented by Bosch [10]. Good soft-
ware architecture design is thus essential to achieve good
quality software. In order to achieve quality, the architect
needs to consider both traditional non-functional require-

ments, such as measuring up to quality requirements in
terms of modifiability, maintainability, performance, and
how well the current resources support the chosen design
decisions. If the available skills do not match the archi-
tectural choices, the resulting task will be overwhelming
for the developers and require much more effort than esti-
mated [9].

2.3. Architectural Design in GSD

Based on existing research in GSD and the common
principles for software architecture design, we identified
certain gaps in the literature. Firstly, it is unclear how
quality demands are met in a globally distributed project.
Quality assurance is difficult even in a collocated project,
and is highly dependent on software architecture design.
When communication is hindered, it is unclear how all
quality demands are considered and how closely imple-
mentation follows the design. Jimenez et al. [31] point
out the need for extra quality processes in GSD projects
and Vaikar et al. [55] give a four-pillars approach which in-
cludes quality evaluation, but other than that no answers
seem to exist. Second, is the issue of modularity - a driver
behind task separation and how Conway’s law appears in
practice. We need to know the level of modularity which
is considered in today’s software development, and does
it consider the global distribution of developers? Thirdly,
are skills taken into account when designing software for
distributed development? Taking into account resources
and matching architecture to skills would reduce defects,
and in a distributed setting there are fewer opportunities
to lean on team members to teach less familiar techniques.
Finally, does Conway’s law go beyond the composition and
structure of the architecture, or can it extend to technical
decisions and skills required from the organizational per-
spectives? All the aforementioned questions relate to the
process and practices of designing software architecture,
and answers can be found by seeking recommended prac-
tices for architecting in a distributed organization. Addi-
tionally, there is a follow-up question: are there particular
challenges in designing software architecture for GSD that
might hinder the best possible practices?

There have been several systematic literature reviews
in the area of GSD, as revealed by the tertiary study by
Verner et al. [8]. Based on this study, it can clearly be
seen that organizational factors, engineering or develop-
ment process, and software project management issues are
the most studied areas in GSD. Notably, from the listed
24 SLR studies, only one which involves design is listed: a
review concentrating on architecture knowledge manage-
ment (AKM) issues by Ali et al. [56]. Several studies
consider software construction [57], but from the process
viewpoint. This strongly suggests that there is a gap in
design related research within GSD.

Ali et al. [56] captured key concepts of AKM in GSD,
to include architecture knowledge coordination practices
and the most crucial challenges. Based on a meta-analysis
of the literature, they presented a meta-model for AKM

4



in a GSD environment. Several practical design related
issues were found, but the focus of the study is knowledge
management, rather than the process of making architec-
ture design decisions and other activities during the de-
sign/implementation phase in software development, which
is the focus of our research. What the meta-analysis does
reflect is a clear delineation between architectural man-
agement in a co-located setting compared to a distributed
development setting.

Software architecture related studies in the context of
GSD have also been reviewed by Mishra and Mishra [58].
They have identified that the main focal areas concerning
architecting are knowledge management, process and qual-
ity, and framework and tool support. Again, this research
does not capture the concrete practices of how to pro-
duce the architecture and achieve, for example, the quality
goals.

By identifying aforementioned gaps in the literature we
have constructed our research questions:

RQ1: What are the challenges in software architecture
design when developing software across globally distributed
sites?

RQ2: What are the recommended practices for software
architecture design when developing software across glob-
ally distributed sites?

To answer these, we have undertaken the systematic
literature review presented in this paper. Individual arti-
cles discussing software architecture in the context of GSD
appear as part of the review, and are presented in the fol-
lowing sections.

3. Review Method

3.1. Protocol

For our review protocol we followed the steps recom-
mended by Kitchenham [59] and Wohlin et al. [60]. The
steps were derived for software engineering following the
protocol as reported by Beecham et al. [61]. The protocol
followed in this SLR is included in Appendix A. We used
the following inclusion and exclusion criteria for selecting
papers:

1. Include only studies concerning 2 or more sites in
different geographic locations;

2. Include only studies concerning the design, develop-
ment or implementation phase;

3. Include only papers with projects within the same
company (offshore insourcing only, no offshore out-
sourcing1);

1Offshore insourcing: Leveraging company-internal resources sit-
uated in a different country
Offshore outsourcing: Leveraging external third-party resources sit-
uated in a different country [62]

4. Exclude open source studies;

5. Exclude experimentations with student teams;

6. Exclude repeated studies (studies with two versions
e.g., conference and journal);

7. Include only peer-reviewed studies;

Criteria 1 and 2 come directly from our research ques-
tion - architecture design practices in distributed software
development. While screening the abstracts of the stud-
ies we also considered architecture evaluation as design, as
it can be undertaken during design formation. Whether
evaluation-related studies were actually included depends
on the content, where we ask “do they provide design prac-
tices”? Criterion 3 is to limit the scope and refine the
question - in cases of outsourcing there are often quite sep-
arated teams for different tasks and less work undertaken
on the same issues between sites. Further, we wanted to
concentrate on the case where all sites belong to the same
organization and have same organizational and business
drivers behind the design. For this reason we also excluded
open source projects (Criterion 4) and student projects
(Criterion 5). In Criterion 6, in order not to skew results,
we chose the most comprehensive version where a study
had been duplicated, which is usually the journal version.
Finally, we did not make exclusions based on the type of
study, as long as it was peer-reviewed and had novel in-
put, (Criterion 7) as challenges are often described in ex-
perience reports and reviews, rather than in pure research
papers.

We searched six databases, and altogether we found
1820 papers in our searches. The search process and how
many papers were found or selected in each phase is pre-
sented in Fig. 1. As a result of the process, a set of 55
reviewed papers are included in this study. Each stage
of the selection process was validated by one or two inde-
pendent researchers. Validation at each stage helped to
sharpen the inclusion criteria. Validation is explained in
more detail in Appendix A.

3.2. Sensitivity Analysis Results

When performing a systematic literature review one
must be aware of skewed results, particularly if studies
from very similar background dominate the selection. Re-
sults may be biased if the studies focus on a particular era,
are performed by a certain research group(s) or in a small
region [59], [60]. In order to identify potential bias in the
selected studies we performed sensitivity analysis, where
we analyzed the distribution of primary studies based on
publication year, geography, type of study and publication
venue.

The distribution of selected studies per type is illus-
trated in Fig. 2. A majority of the studies are case studies
and experience reports which have a practical approach to
the research questions. Experiment type studies mainly
propose new approaches with initial validation, and their
main contribution, as with reviews, is to gather the known

5



Database
searches

Select based on
title and abstract

Select based
on full text

Validate
selection

Remove
duplicates and 
repetitions

1820 
papers

1197

135

Snowballing 55 Articles

46

+9

Validate
selection

IEEE 572

ACM 430

Springer 315

ScienceDirect 90

Wiley 301

Web of 
Knowledge 112

140 46

Refine selection criteria

Figure 1: Selection process

0

2

4

6

8

10

12

14

16

Review Case study Experiment Experience
report

Other

N
u

m
b

er
 o

f 
st

u
d

ie
s

Figure 2: Publications per type

0

2

4

6

8

10

12

N
u

m
b

er
 o

f 
st

u
d

ie
s

Figure 3: Publications per year

0

2

4

6

8

10

12

14

N
u

m
b

er
 o

f 
st

u
d

ie
s

Figure 4: Countries represented in the studies

challenges. The studies of type ”other” are multi-method
studies, proposed tools, frameworks and position papers.

The distribution of publications per year is given in
Fig. 3. We did not restrict our search to specific years,
and the earliest publication included is from year 1999,

0

2

4

6

8

10

12

14

16

18

20

ICGSE Journal WICSA + ECSA ICSE Chapter in book Other
N

u
m

b
er

 o
f 

st
u

d
ie

s

Figure 5: Publication venues

with a total of six studies published by 2005, after which
the number of studies increases significantly. There is a
distinctive peak in publications in year 2010, for which we
could not find a clear explanation, other than we could
see that research gains more interest every few years, then
drops and starts building up again. After research in the
area gained momentum again until 2016, we only found
two publications in total from January 2017 to May 2018
that fit our selection criteria.

Naturally, many studies involve several countries due
to the topic of our SLR, but the countries listed in Fig. 4
are the ones where the research group reporting the study
resides. There are 14 countries in total, and almost 24%
of the studies originate from the USA. Furthermore, apart
from 4 studies originating from Brazil, three originating
from Mexico and two from India; all other studies are per-
formed by researchers in Europe (60%).

Finally, Fig. 5 shows where primary studies were pub-
lished. A majority of the studies were published in the pro-
ceedings of the International Conference on Global Soft-
ware Engineering (ICGSE). Several studies were published
in conferences focused on architecture, Working Interna-
tional Conference on Software Architecture (WICSA) or
European Conference in Software Architecture (ECSA),
and in the largest general software engineering conference -
International Conference on Software Engineering (ICSE).
Nine articles were published in journals - four of them in
IEEE Software, while all others were in different journals.
The column Other represents here the 13 different confer-
ences where 14 of the studies were published. The publica-
tion venues were all clearly software engineering oriented.

We additionally analyzed the distribution of primary

6



studies based on what kind of software development pro-
cess was used, what was the domain under study, and
what size was the company in case. We found that in 71%
of the studies the used software development process was
not specified. In 15% the case study company used some
form of agile process, 5% followed the waterfall process,
and in 5% the study described several cases, where one
or more used agile and one ore more some other process.
The company size was undefined in 69% of the studies,
while in 29% the company was multinational or large. In
62% of the cases the domain was not specified, while 13%
of the studies covered cases from various domains. The
largest individual domain was telecommunications, which
was represented in 7% of the studies.

Therefore, this sensitivity analysis highlights a bias in
the studies that we need to be aware of in our data synthe-
sis. Themes found are likely to take on a mainly Western
view of the problem area. Further, we cannot be sure on
how much of the reported practices depend on used process
or size of company, as in over two thirds of the studies this
background information was not specified. On a more pos-
itive note, there is a good spread of methods used across
all studies which should produce a rich set of data that we
can draw on to answer our research questions.

3.3. Data Synthesis

Because of the versatility of the material, we decided
to synthesize the data with thematic synthesis [63]. The-
matic synthesis organizes the material in a way that makes
it easier to identify the key findings of the primary studies.
Using thematic synthesis enables a rather rich presentation
of data within limited space and is more flexible [64, 65].
It is also particularly suitable for studies with mixed meth-
ods [60], as is the case here. There are weaknesses as well
(mostly due to the transparency of the process), but both
the strengths and the applicability of this synthesis tech-
nique made it the best choice for this study.

Our thematic synthesis is inductive and data driven,
i.e., we have not tried to fit the findings into an existing
theoretical framework, but the themes have been produced
purely from the data itself. We followed the procedure
as described by Braun and Clarke [63], who define the
following six phases for performing thematic analysis.

Phase 1: familiarizing oneself with the data. This was
done during the review process, as all included primary
studies were fully read by at least one author, while oth-
ers read a portion of the studies as part of the validation
process.

Phase 2: generating initial codes. We generated
the initial codes by collecting extracts from the primary
studies that would directly answer the research questions.
From the extracts we could identify a description of a chal-
lenge or some kind of practice, technique or advice on how
to perform architectural design. We then developed the
actual codes by identifying common or related words from
the extracts.

Phase 3: searching for themes. In this phase the codes
were sorted into and under potential themes. The codes
were analyzed and we considered how different codes could
be combined to form a more general, overarching theme.
The codes were arranged based on their relationships to
each other, resulting in sub-themes under the main themes.

Phase 4: reviewing themes. After forming a set of can-
didate themes, they were refined. We had two iterations
of reviewing the themes - firstly, we re-read the extracts
that were placed under each theme, and confirmed whether
it still belonged under the suggested theme, or moved it
under another theme. Secondly, again, as proposed by
Braun and Clarke [63], there was a discussion among the
researchers about the themes, which lead to a significant
rewording of the theme names and theme re-organization.

Phase 5: defining and reviewing the themes. This phase
identified the ”story” behind a theme, conducting and
writing an analysis of what each theme reveals about the
subject.

Phase 6: writing the report.
After performing these steps, we had identified a set

of challenges and recommended practices related to archi-
tecture design in GSD, grouped under themes. Through
analysis of the challenges and good practices we were able
to elicit relationships between the themes. This brought
out a thematic conceptual model of the problem field -
architecting in GSD. Furthermore, based on the analysis
performed, we mapped the challenges and practices into
a concern framework. The model and concern framework
are presented in the Results section.

4. Results

We will go through the results of our analysis by first
revisiting the research questions to summarize our find-
ings. We will then proceed by presenting a conceptual
model derived from the literature in Subsection 4.2. Fi-
nally, in Subsection 4.3 we will present challenges and prac-
tices for architecting in GSD in more detail, including how
each challenge and solution maps to the research papers
(Tables 1-8) and by extension to the research questions.

4.1. Revisiting the Research Questions

RQ1: What are the main challenges in software ar-
chitecture design when developing software across globally
distributed sites?

From the analysis it became quite clear that the main
challenges stem from the distributed nature of GSD, par-
ticularly the organization and the teams. Challenges in-
clude considering organization structure in the design, find-
ing the issues that affect how distributed teams can best
work, and managing awareness in distributed teams - in-
cluding awareness of architecting practices and guidelines.
Defining clear ways of working, including quality and change
management practices is particularly important to ensure

7



that responsibilities regarding these issues are clear and
that they are handled with due diligence.

RQ2: What are the recommended practices for soft-
ware architecture design when developing software across
geographically distributed sites?

The discovered recommended practices include the need
for a well-thought out work distribution that mirrors the
structure of the product and the structure of the organi-
zation. Work should be broken into manageable pieces.
Furthermore, having clearly defined design practices and
interfaces will enhance loose coupling and support the aims
of work distribution. The need for communicating the ar-
chitecture across different sites should be recognized, and
different views used as needed. The distributed nature of
the organization should be considered when assigning ar-
chitects and organizing the design work.

4.2. Architecting in GSD

Our thematic analysis of the literature allowed us to
produce a conceptual model of the problem area, shown
in class diagram format in Fig. 6. Themes (concepts) are
presented as classes, practices and challenges are given (in
condensed form due to space restrictions) as class mem-
bers (coded with P1-P9 for practices and C1-C9 for chal-
lenges), and different themes have relationships between
them. We have used the directed labeled association to
mark the cases where the concepts have indisputable rela-
tionship between them. We have used the directed depen-
dency notation where the relationship between concepts
is clear but how much actions regarding one theme affect
another depends on the case organization and project. Fi-
nally, inheritance is used to notate a special relationship
between themes and directly derived sub-themes. We have
also included a note on Conway’s law to clarify the rela-
tionships between Organization, Task Allocation and De-
sign Decisions. Note that these are only the themes that
arose from our SLR. While the concepts as such are fa-
miliar to the architecting community, the given themes
are ones that appear to have particular importance in the
context of GSD.

As is commonly known, the core of architecting is the
Design Process, and this applies to GSD as well. The
design process is often managed and dictated by the ar-
chitect, or a team of architects, who has a certain role.
Another option is to have a team of developers sharing
architectural responsibilities, as may be in the case where
agile practices are used. The role of architect is not self-
evident, and contains many social and organizational as-
pects in addition to holding the main responsibility for the
design decisions [44] and the architect’s managerial role is
particularly emphasized in GSD.

The design process thus entails project management is-
sues as well as design decisions. We are separating these
into two separate concepts, as often different roles are

needed to take responsibility for each. Design decisions
and project management are also often conflicted - the
best possible design in terms of quality may not always
be possible due to project management restrictions, and
critical design needs may, in turn, result in resource ac-
quisition or organization restructuring. These two core
concepts of architecting are noted with stereotypes in Fig.
6 to distinguish under which core concept each theme falls.
Further, classes where these concepts overlap are marked
with a special stereotype ”Design decisions and Project
Management”. The core concepts overlap most clearly in
Ways of Working. Ways of Working include, for exam-
ple, processes to check compliance to requirements, qual-
ity management, and communication, which are clearly
project management tasks. However, all these tasks may
have a huge influence on design decisions, and it is impos-
sible to completely separate design-related aspects from
managerial aspects in this area. For example, a manager
decides the processes for Architectural Knowledge Man-
agement (AKM), including how architectural artefacts are
stored. However, the actual artefacts to be stored are a
direct result of design decisions. Furthermore, design deci-
sions make up the architecture and thus greatly affect its
understandability, but how the architecture is presented
and communicated may have just as big an effect, and
these are determined by Ways of Working. In Figure 6 we
have given three sub-themes for Ways of Working - AKM,
Quality Management and Change Management. There is
a strong link also between Change Management and Mod-
ularity. A modular design will help in managing changes,
as it is possible to isolate software changes to well-defined
”modules”. However, poor change management will make
maintaining a modular architecture more difficult.

Design Decisions follow common Design Practices. Most
commonly accepted design practices, in turn, strive for
a modular architecture. How well Modularity has been
achieved can be calculated by using the metrics for Cou-
pling (dependencies between components).

In addition to Ways of Working, project management
and design decisions also overlap in Task Allocation. At
the heart of task allocation is Conway’s law - the software
architecture and its developing organization will end up
mirroring each other. Either the organization will be a
driver in separating the architecture into components that
fit the organization, or the software architecture will drive
the restructuring of the organization to fit the develop-
ment tasks’ required communication structure. Thus, both
the design and particularly the modularity of the archi-
tecture and the organization (its structure and resources)
determine task allocation. Furthermore, task allocation,
through Conway’s law, also affects the design and the or-
ganization in turn.

In addition to themes and how they relate to each
other, we show the challenges [C1-C9] and practices [P1-
P9] we found in our analysis under each theme in Fig. 6
– these challenges and practices effectively answer our re-
search questions, as challenges are findings for RQ1 and

8



dictates protocols for

induce

can be calculated 
as

determines

determines

implement

is reponsible for

has

includes determining
can be affected by

<<Design decisions and 
Project management>>

Role

<<Design decisions and 

Project management>>

Architect

<<Design decisions and  

Project management>>

Design Process

<<Project management>>

Project Management
<<Design decisions and Project 

management>>

Ways of Working

<<Design decisions>>

Design Decisions

Difficulties with keeping 
architecture understandable (C2)

Use different diagrams (P3)
Apply analysis methods (P2)

<<Design decisions>>

Design Practices

Apply commonly 
acknowledged 
practices and 
guidelines (P7)

Incorrectly  applied or 
insufficiently defined 
practices (C7)

<<Project management>>

Organization

<<Project management>>

Structure

Ensure compliance to 
org. structure in design 
(P1)

Inability to match org. 
structure to design (C1)

<<Project management>>

Resources

<< Project management>>

Architectural 
Knowledge 

Management

Use a specific team of 
architects to distribute 
knowledge (P6)

Lack of awareness 
between distributed 
teams (C3)

<<Design decisions and 

Project management>>

Quality 
Management

Insufficient quality 
assurance (C4)

<<Design decisions>>

Change 
Management

Inability to maintain a 
stable architecture (C5)
Lack of compliance (C6)

<<Design decisions and 

Project management>>

Task Allocation

Issues with work items 
spanning across sites 
(C9)

<<Design decisions>>

Modularity

Well-defined 
interfaces (P8)

Difficulties identifying 
dependencies (C8)

<<Design decisions>>

Coupling

Ensure knowledge of 
architectural artefacts 
(P4)
Establish a single 
repository for arch. 
artefacts (P5)

Consider available 
resources (P9)

affects

[Conway's law: organization and 
architecture mirror each other.]

Design-driven task allocation may lead to 
restructuring the organization (teams), while 
organization-driven task allocation may 
affect design decisions

C1...Cn: Challenges (issues)

<<core concept>>

Theme name

: Strong relationship between 
themes

: Relationship depends on 
organization

: Theme with core concept 
under which it belongs

P1...Pn: Practices (recommended)
Key:

: Inheritance - subtheme 
derived from higher-level 
theme

Figure 6: Architecting in GSD.

practices for RQ2. Individual studies often only discussed
either challenges or practices to architecting – it was rare
that actual solutions were proposed to perceived challenges.
Using the conceptual model as given in Fig. 6 we were able
to match challenges with the practices we found in the re-
viewed literature. In many cases we could see that the
practices mirror the challenge.

4.3. Concern Framework

Having answered the RQs, we developed a concern
framework from our SLR. The concern framework essen-
tially maps individual practices to challenges, thus pro-
viding solutions to identified problems. Challenges and

recommended practices are further broken down to con-
crete concerns, which are given at such a detailed level
that a practitioner should be able to see if such concerns
are addressed. We will go through the concern framework
focusing on themes introduced in Fig. 6, discuss the chal-
lenges and practices in more detail and complement them
with lower-level concerns which will aid in practical ar-
chitecting. The next sub-sections consider challenges and
practices for the Organization, Ways of Working, Archi-
tectural Knowledge Management, Quality Management,
Change Management, Design Practices, Modularity, and
Task Allocation. Citations for the 55 papers included in
our literature review are given in numeric form with a

9



Table 1: Concerns for Organization

ID Challenge/Practice Concerns References

C1

Challenge - Inability to
match organization
structure and practices
to architectural design
and assign tasks
accordingly

Difficulties with making the organization report-
ing structure match the geographic distribution of
tasks (C1 co1)

[SLR1],[SLR2],
[SLR3],[SLR4]

Overlooking organization management (C1 co2) [SLR5],[SLR6],
[SLR7]

Insufficient matching of code to available resources
(C1 co3)

[SLR2]

Lack of alignment between architectural decisions
to organization structure and not reflecting archi-
tectural changes to organization (C1 co4)

[SLR1],[SLR8].
[SLR9],[SLR10],
[SLR11],[SLR12]

Difficulties with correctly identifying dependencies
between work units and thus assigning work to
distributed teams (C1 co5)

[SLR13],
[SLR14],
[SLR15]

Inability to maintain experts from all domains re-
quired for change implementation (C1 co6)

[SLR2], [SLR8]

Misaligned interests and undesirability of tasks
make task distribution challenging (C1 co7)

[SLR16]

P1

Practice - Ensure that
organization/work
allocation is compliant
with architecture design

Ensure that components that will be dispersed to
distributed teams are loosely coupled or otherwise
plan component breakdown to independent mod-
ules based on distribution of teams (P1 co1)

[SLR1],[SLR4],
[SLR9],[SLR13],
[SLR14],[SLR17],
[SLR18],[SLR19],
[SLR20],[SLR21],
[SLR22]

Retain tightly coupled work items at one site
(P1 co2)

[SLR2],[SLR4],
[SLR13],[SLR14],
[SLR15]

Let the architecture determine how tasks are allo-
cated, and who is responsible for each task’s teams
(P1 co3)

[SLR4],[SLR23],
[SLR24]

Break work items to easily manageable pieces
(considers one subsystem, can be handled by one
person) (P1 co4)

[SLR2], [SLR21]

P9

Practice - Consider
available resources from
different sites in the
design

Identify where the domain expertise lies and allo-
cate tasks accordingly (P9 co1)

[SLR2],[SLR5],
[SLR19],[SLR20]

bibliography at the end of this paper in a separate section
(”Selected 55 Papers for the SLR”). Note that citations
within the text from papers selected for the SLR are noted
with the prefix ”SLR”.

4.3.1. Organization

Table 1 shows the challenges and recommended prac-
tices specific to the organization, its structure and re-
sources. Each challenge and practice is given an ID (P
for Practice, C for Challenge and a number). Challenges

and practices are further broken down to concerns - smaller
scale challenges or more detailed ways to implement the
practice.

The challenge regarding the organization relates to match-
ing the organizational structure and practices to architec-
tural design and task assignment (C1). This challenge
already explicitly shows how tightly linked the organiza-
tion and architectural design are and how they overlap in
allocating tasks. We have grouped here the challenges and

10



Table 2: Concerns for Ways of Working

ID Challenge/Practice Concerns References

C2
Challenge - Difficulties
in keeping architecture
decisions understandable

Insufficient understanding of architectural deci-
sions in teams and other stakeholder groups
(C2 co1)

[SLR3],[SLR4],
[SLR12],[SLR14],
[SLR21],[SLR25]

P2

Practice - Apply
analysis methods for
detecting dependencies
and conflicts

Use (call) graphs/matrices to depict and detect
coupling (P2 co1)

[SLR9],[SLR13],
[SLR18],[SLR20],
[SLR25],[SLR27]

Use visualization of decisions/metrics (P2 co2) [SLR11],[SLR25],
[SLR28]

Use collaborative modeling (P2 co3) [SLR29]

P3
Practice -Use different
types of diagrams for
different stakeholders

Use a variety of diagrams to promote awareness
(P3 co1)

[SLR4],[SLR12],
[SLR14],[SLR25],
[SLR30],[SLR31],
[SLR32],[SLR33]

Don’t over-rely on UML diagrams (P3 co2) [SLR30]

practices that consider the organization prior to allocating
tasks, i.e., what should be considered when task allocation
is at planning stage, where the focus is on fitting the or-
ganizational practices, structure and resources to design
– task allocation challenges being a result of not solving
this organizational challenge and related concerns (C1 co1,
C1 co2, C1 co3, C1 co4 and C1 co7). Concerns also touch
other themes, such as implementing changes (C1 co6) and
identifying dependencies (CI co5), further showcasing how
tightly linked the design practices and project manage-
ment issues are when architecting.

The corresponding practices state that one should en-
sure that the architectural design and organization are a
match (P1) and remember to consider the available re-
sources (P9), especially domain expertise (P9 co1). The
concerns related to structure provide more concrete guide-
lines - ensuring that components sent to different sites
are loosely coupled ones (P1 co1), keeping tightly coupled
items to one site (P1 co2), using an architecture-driven
approach for task allocation (P1 co3) and breaking down
work items to manageable pieces (P1 co4).

One can clearly see that organization related practices
seem to follow Conway’s law – but which comes first, the
organization or the architecture, and how to match them?
Matching, in turn, boils down to task allocation, since
the underlying cause for all concerns here is the need for
developers to communicate when they are working on de-
pendent components, and distance makes communication
more difficult.

4.3.2. Ways of Working

Challenges and recommended practices related to Ways
of Working are listed in Table 2. As seen in Figure 6,
the Ways of Working theme considers many aspects of

the design process where project management and design
decisions overlap. There are three sub-themes for Ways
of Working, which will be covered separately. On this
level we identified a challenge in keeping the architecture
decisions understandable (C2), with it’s related concern
(C2 co1) of decisions not being understood by developers
or other stakeholders who should be able to understand
the architecture. This could be aided by applying analy-
sis methods (P2), particularly using different methods to
detect (P2 co1) and visualize (P2 co2) different aspects of
the architecture. Furthermore, stakeholders have different
backgrounds, which should be taken into account when in-
troducing the architecture, and understandability can be
aided by using different views (P3) and selecting the view
based on the stakeholder’s needs and level or expertise
on the design (P3 co1). Further, to aid understandabil-
ity, architects should not over-rely on technical diagrams,
such as UML, (P3 co2) as evidence shows that different
sites may have difficulties interpreting such diagrams due
to different backgrounds.

4.3.3. Architectural Knowledge Management

One essential sub-theme under Ways of Working is Ar-
chitectural Knowledge Management (AKM). AKM is a
sensitivity point between project management and design
- architectural knowledge is key for quality design, and
communicating that knowledge is key for successful im-
plementation. AKM related challenges and recommended
practices are presented in Table 3. The main challenge in
AKM is indeed lack of awareness, i.e., failure to communi-
cate (C3). The more concrete concerns highlight specific
issues around communication, such as not using an elec-
tronic knowledge management system even if there is one
available (C3 co4), and lack of communication leading to

11



Table 3: Concerns for AKM

ID Challenge/Practice Concerns References

C3

Challenge - Lack of
awareness between
distributed teams and
problems due to
communication and
knowledge management
challenges

Problems caused due to not involving an archi-
tect with sufficient technical background knowl-
edge (C3 co1)

[SLR4],[SLR18]

Difficulties in effective creation and sharing of ar-
chitectural artefacts (C3 co2)

[SLR12],[SLR14],
[SLR15],[SLR16],
[SLR34],[SLR35]

Difficulties in maintaining a common view of the
project (C3 co3)

[SLR4],[SLR12],
[SLR14],[SLR36],
[SLR37]

Inconsistent usage of electronic systems for knowl-
edge sharing due to preference of social networks
(C3 co4)

[SLR35],[SLR36]

Impractical condensing of knowledge due to high
dependency on one lead architect (C3 co5)

[SLR17],[SLR37]

Insufficient architectural documentation (C3 co6) [SLR35],[SLR39],
[SLR40],[SLR41]

P4

Practice - Ensure
knowledge of archi-
tectural artefacts and
practices across sites
with communication

Communicate architectural artefacts and practices
clearly to all sites (P4 co1)

[SLR3],[SLR4],
[SLR8],[SLR14],
[SLR17],[SLR21],
[SLR25],[SLR31],
[SLR35],[SLR37],
[SLR41],[SLR42],
[SLR43],[SLR44],
[SLR45]

P5
Practice - Establish a
single repository for ar-
chitectural artefacts

Maintain a single repository for architectural arte-
facts accessible to all (P5 co1)

[SLR8],[SLR15],
[SLR21],[SLR22],
[SLR25],[SLR30],
[SLR41],[SLR43],
[SLR46]

P6

Practice - Use a team
of architects to collect
and distribute the
knowledge

Define clear responsibilities for architecture team
to handle changes that span through several com-
ponents and/or sites (P6 co1)

[SLR8],[SLR9],
[SLR17],[SLR31],
[SLR36],[SLR37],
[SLR38],[SLR47],

Ensure each site has representative architect
(P6 co2)

[SLR9],[SLR17],
[SLR38]

Arrange collocated activities for architecture team
to promote awareness (P6 co3)

[SLR16],[SLR26],
[SLR37],[SLR38],
[SLR48]

Establish a team of architects for handling com-
munication between different stakeholders and
teams (P6 co4)

[SLR25],[SLR37]

different stakeholders having different views of what the
architecture actually is (C3 co3). The importance of rec-

ognizing the architect’s role is also brought out in AKM -
not having an architect with a technical background can

12



Table 4: Concerns for Quality Management

ID Challenge/Practice Concerns References

C4

Challenge -
Insufficient
quality
assurance

Delegating design decisions to local teams deteri-
orates quality (C4 co1)

[SLR4],[SLR9],
[SLR22],[SLR46]

Insufficient quality management (C4 co2) [SLR9] [SLR12],
[SLR14],[SLR21],
[SLR25],[SLR34],
[SLR48]

Decentralized data and state management lead to
inferior quality (C4 c3)

[SLR9]

Table 5: Concerns for Change Management

ID Challenge/Practice Concerns References

C5
Challenge - Inability to
maintain a stable
architecture

Lack of stability in architecture leads to difficul-
ties in applying design rules and dividing tasks
(C5 co1)

[SLR18],[SLR24]

Unclear ownership of architectural elements
(C5 co2)

[SLR7][SLR44]

C6

Challenge-Unforeseen
problems due to lack of
compliance to
organization, business
process or architectural
specification

Difficulties ensuring compliance of modular design
throughout the lifecycle and changes in organiza-
tion (C6 co1)

[SLR2],[SLR10]

A lack of conformance to architectural specifica-
tion (C6 co2)

[SLR11],[SLR30]

A lack of compliance to the business process
(C6 co3)

[SLR10],[SLR11]

lead to serious issues as the architect is unable to recog-
nize and communicate potential problems in the design
(C3 co1). The responsibility for creating and sharing ar-
chitectural artefacts must be clear for such knowledge to
be effectively distributed (C3 co2), as well as the level of
detail required to understand the artefacts (C3 co6). Fur-
thermore, if there is only one central architect in a dis-
tributed project holding all the information, distributing
it to others is challenging (C3 co5).

As there have been a significant number of studies fo-
cusing particularly on AKM, there are also more working
practices found than for other themes. First, studies sim-
ply remind the practitioner to communicate (P4 and more
precisely P4 co1). Secondly, to solve some basic knowl-
edge management issues, it is advised that in distributed
projects there should be one single repository where all
architectural artefacts are stored and all relevant stake-
holders should have access to that repository (P5 and
specifically P5 co1). The last practice, however, is not
as self-evident - using a team of architects (instead of just
one central architect) to collect and distribute knowledge
(P6). More concretely, each site should have its own rep-
resentative architect (P6 co2) and these architects should

have collocated activities throughout the design process
to increase awareness within the architect team (P6 co3).
Finally, special concerns (P6 co1) are raised on clearly
defining responsibilities for the architect team to handle
changes that span across components or sites as well as
using the team of architects as mediators, communicating
between different stakeholders (P6 co4). As most prac-
tices concentrate on keeping tasks separated, it is espe-
cially important to recognize that pure separation is not
always possible, and there should be a clear plan on how to
handle those tasks that are likely to cause most problems.

4.3.4. Quality Management

A key driver in architecture design should be the qual-
ity requirements of the system. Thus, quality management
should be defined when considering the ways of working in
a design process. Table 4 lists the concerns in managing
quality - no recommended practices were found under this
theme. Quality is difficult to gain, measure and maintain,
and unsurprisingly we found a challenge related to insuffi-
cient quality assurance (C4). There were reports on dete-
riorated quality due to design decisions being delegated to
teams with no one checking the decisions until it was too

13



late (C4 co1). A more general concern was simply insuf-
ficient quality management processes (C4 co2) - in most
cases no one was assigned the responsibility for quality as-
surance. Finally, a concrete concern was raised regarding
decentralized data and state management and their effect
on quality (C4 co3).

4.3.5. Change Management

Similar to quality management, change management is
an important area of architecting, but there are no good
practices found in the literature to aid change manage-
ment challenges, as listed in Table 5. There are two main
challenges - maintaining a stable architecture (C5) and
lack of compliance (C6). An architecture may become
unstable if ownership of architectural elements is unclear
(C5 co2), and instability will, in turn, hinder applying de-
sign rules (deteriorating quality) making task allocation
difficult, i.e., if architecture is unstable, so is the modular
division (C5 co1). While maintaining stability has to do
with change within the architecture, concerns have been
raised regarding lack of compliance to aspects beyond the
architect’s control (changes within the organization, re-
quirements, process, etc.) (C6 co1). In some cases such
compliance was lacking already at the start of the design
process (C6 co2, C6 co3).

4.3.6. Design Practices

At the core of architecting are design practices, and
concerns for this theme are listed in Table 6. The chal-
lenge we found was caused by insufficiently or incorrectly
defined or applied practices for design and development
(C7). Clearly, problems arise if a) practices are not de-
fined clearly enough or b) practices are not applied as they
are defined. This is most emphasized by simply ignoring
or incorrectly using agreements on design (C7 co5). This
concern specially appears in GSD, as ignorance of such
agreements is often a result of different working cultures
and principles, and the reasoning behind rules may not
be clear for remote sites. Insufficient interface specifica-
tions (C7 co3) is particularly challenging in GSD as well,
as separation of tasks relies so heavily on separation of
components, which in turn is achieved through interfaces.
Having commonly agreed practices and well-defined inter-
faces is critical to enable a working product to be deployed
from the separated tasks. These difficulties were found and
described by Herbsleb and Grinter [SLR50]:

Following design agreements, teams developed each com-
ponent at a single site in relative isolation from other sites’
teams. Each team built simulators to represent other com-
ponents that their code would need to interact with. In-
terface specifications lacked details, such as message type
and assumptions on performance, and developers proceeded
unknowingly with incorrect assumptions about other com-
ponents. Because of simulators the discrepancies remained
hidden for long time

A related concern discusses assumptions (C7 co4). Sep-
arated teams tend to assume what others are doing if
agreements are insufficiently defined or there is a lack of
communication. This again will often lead to component
mismatch. More detailed concerns relate to prioritization
rules and inconsistent versioning (C7 co1 and C7 co2). As
a way to tend to this challenge, practitioners simply sug-
gest applying commonly acknowledged architecting prac-
tices (P7). Such practices are listed by Sauer [SLR21]:

Stick to proven design and architecture principles: in-
formation hiding, loose coupling, strong cohesion, design
by contract, open closed principle, avoidance of type inter-
dependencies, etc. .. Principles gear towards understand-
able software with fewer dependencies, thus easing main-
tainability and further development.

More concretely, one should ensure that practices are
well-defined (P7 co2), and there should also be well-defined
principles for coding (P7 co1). This would ensure that the
code actually matches the architecture. More detailed con-
cerns relate to using a service oriented approach and using
prototyping (P7 co3, P7 co4). Finally, an important as-
pect in fitting architecture to requirements is to consider
business goals in design (P7 co5).

While our goal was to find concrete practices for archi-
tecting in GSD, the actual technical details given in the
studies were rare. The most detailed approaches identified
are the following:

• Well defined invocations, narrowly defined interfaces
[SLR9], [SLR22], [SLR36]

• Week-long workshops for design phase [SLR16]

• Architectural styles [SLR18], [SLR45],[SLR52]

• Documenting architectural design decisions and stor-
ing them in a commonly available repository [SLR15],
[SLR25], [SLR41]

• Keep a global repository of architectural components,
including key aspects such as responsibilities, non-
functional characteristics, assignment to layers and
interfaces. [SLR22], [SLR25]

• Identifying logical [SLR24] and dynamic, timing and
resource dependencies [SLR32]

• Detailed code conventions [SLR30], [SLR35]

• Work items that affect several subsystems are split
into distinct modification requests (MR) so that each
MR affects one subsystem. A work item in a subsys-
tem that is too much for one person is organized into
several MRs, each for one person. [SLR36]

• Application Programming Interfaces [SLR11]

• Service Oriented Architectures [SLR4], [SLR15],
[SLR33], [SLR44]

14



Table 6: Concerns for Design Practice

ID Challenge/Practice Concerns References

C7

Challenge-Multiple
problems due to
insufficiently or
incorrectly defined or
applied practices for
design and development

Insufficient prioritization rules (C7 co1) [SLR4], [SLR9]

Inconsistent versioning (C7 co2) [SLR9]

Insufficient interface specifications (C7 co3) [SLR1],[SLR4],
[SLR50]

Incorrect assumptions made during design (C7 c4) [SLR50],[SLR51]

Ignorance of or incorrect use of principles, rules
and guidelines for architectural design and knowl-
edge management (C7 co5)

[SLR9],[SLR11],
[SLR14],[SLR34],
[SLR36],[SLR44],
[SLR45],[SLR51],
[SLR52],[SLR53]

P7

Practice - Apply
commonly acknowledged
architecting practices
and guidelines

Ensure that teams develop code based on common
design agreements (P7 co1)

[SLR1],[SLR4],
[SLR8],[SLR17],
[SLR22],[SLR37],
[SLR44],[SLR50]

Use common architectural practices and ensure
they are well-defined (P7 co2)

[SLR4],[SLR13],
[SLR15],[SLR18],
[SLR21],[SLR24],
[SLR34],[SLR38],
[SLR47],[SLR48],
[SLR52],[SLR54]

Use a service oriented approach (P7 co3) [SLR15],[SLR20],
[SLR44]

Use prototyping (P7 co4) [SLR30]

Include business goals in design (P7 co5) [SLR22],[SLR25]

• Microservices [SLR22]

• Continuous integration and deployment [SLR22]

• Wizards [SLR30]

We can see that the given detailed practices are mainly
concerned with managing work items and enabling loosely
coupled components, while there are also some mecha-
nisms for how to achieve common design practices.

4.3.7. Modularity

A particular aspect of architecting is modularity, i.e.,
separating functionality into independent components or
modules. This is particularly important in GSD, as mod-
ularity is often the driver for task allocation. Modularity
related concerns are listed in Table 7. The challenge in
achieving a modular architecture lies in correctly identi-
fying architectural dependencies and decoupling compo-
nents (C8). As the concerns reveal, not all dependencies
are self-evident - in addition to operation calls, there are
other code level decisions (e.g., common variables and ob-
ject states) as well as resource dependencies (skills) that

may introduce dependencies between components and the
developers implementing them (C8 co1). Being able to
identify all relevant dependencies requires skills, as demon-
strated by Bass et al. [SLR9]:

Currently the view is that the technical mechanisms
that cause task interdependencies are invocations across
modules (assuming a module is a task assignment to a
single team). This view leads to a relatively narrow fo-
cus when architects and managers attempt to align the ar-
chitecture with the organization. We have found that this
narrow view is not sufficient. There are additional archi-
tectural mechanisms such as state management, resource
utilization, and schedule synchronization which can also
require extensive interaction among teams.

Furthermore, the actual technical practice of decou-
pling should be carefully considered from all perspectives,
as dos Santos and Werner [SLR28] point out:

Decoupling components may or may not decouple tasks.
Adding an intermediary where the most difficult dependen-

15



Table 7: Concerns for Modularity

ID Challenge/Practice Concerns References

C8

Challenge-
Difficulties in
identifying
architectural
dependencies
and decoupling
components to
sufficiently
separate work
items

Insufficient decoupling, cross-component features
(C8 co1)

[SLR1],[SLR17],
[SLR34],[SLR37],
[SLR45]

Inability to recognize dependencies between or cre-
ated by architectural decisions. (C8 co2)

[SLR4],[SLR9],
[SLR14],[SLR24],
[SLR29],[SLR51],
[SLR54]

P8
Practice - Promote
loose coupling with
well-defined interfaces

Implement well-defined interfaces to increase mod-
ularization and aid loose coupling (P8 co1)

[SLR1],[SLR4],
[SLR9],[SLR13],
[SLR17],[SLR24],
[SLR44]

Table 8: Concerns for Task Allocation

ID Challenge/Practice Concerns References

C9
Challenge-Issues with
work items spanning
across several sites

Increased amount of effort with modifications in-
volving several developers across different sites
(C9 co1)

[SLR2]

Increased needs for coordination when using ex-
perts from different sites (C9 co2)

[SLR2],[SLR8],
[SLR37],[SLR55]

cies are semantic rather than syntactic may in fact make
the task coordination problem harder. Understanding task
coupling would, for example, let us predict if the need for
coordination is so intense that teams need to be co-located.

Keeping features within one component also is not an
easy task, and thus dependencies between components can
creep into the architecture if cross-component features are
easily accepted (C8 co1).

The related practice encourages well-defined interfaces
to promote loose coupling (P8), in this context to increase
modularity (P8 co1). Well-defined interfaces were already
discussed in relation to Design Practices, but they are par-
ticularly important in achieving modularity in architec-
ture.

4.3.8. Task Allocation

The last theme in our model is Task Allocation, specific
concerns for which are given in Table 8. Task allocation is
at the cutting point of design and project management -
how to allocate tasks, considering the given resources, or-
ganization structure and design? What comes first - design
or organization? Thus, task allocation related challenges
and practices have already been covered partially in rela-
tion to organization, design practices and modularity. We
identified one additional challenge. This relates to when

tasks have already been allocated to span across several
sites (C9). One should be aware that, in this case, there
will most likely be an increased amount of effort as devel-
opers from different sites need to communicate in order to
complete the task (C9 co1). This will lead to increased
needs for coordination (C9 co2). Based on the findings of
our SLR, allocating tasks across sites should be avoided
(unless the company is practicing FTS, which is a special
case). The checklists provided in the Section 5.1 should
help to avoid this particular challenge.

5. Discussion

An interesting point in our findings is the similarity be-
tween collocated and GSD projects and products, which
is emphasized by Clerc [SLR43]:

In contrasting software products developed using GSD
with products developed on a single development site, we
did not find significant differences between the two groups.

The recommended practices and challenges we discov-
ered are largely common also in collocated projects, but
there appears to be different emphasis in GSD due to
global distance. As collocated projects do not experience
the challenges brought by the three dimensions of global

16



distance, for example task allocation would not be such
an important issue. Hence, modularity would likely be
also less emphasized in collocated projects (although good
architects strive for it anyway).

However, we also found recommendations that the dis-
tributed nature of the development work should be taken
into account in the design, and from the SLR we were
able to identify recommended practices targeted specifi-
cally for distributed software design. Further, previous
research by Casey and Richardson [25], indicates that not
taking the distributed nature of development into account
causes problems – ”too often the implementation of an
outsourcing or offshoring strategy has been seen as simply
the replication of those strategies which are implemented
for collocated software development.”

Thus, it could be argued that the difference between
distributed and collocated architecting stems from a re-
quirement to adapt the design practices to consider global
distance by, e.g., having a multi-sited team of architects
or leveraging local knowledge from different sites. Whether
this need is widely recognized in practice is not self-evident.
In any case, not recognizing the need for different processes
when working in a distributed environment is a cause for
concern.

As for actual distributed architecting – an overview of
the identified challenges and recommended practices pre-
sented in Tables 1-8 clearly reveals a key issue in GSD: the
most acknowledged practices relate to the most commonly
identified challenges. However, practices are still rather
abstract, and scarcely applied. As an example, Clerc re-
ported [SLR43]:

Decomposition and layering and design patterns are
well-known approaches to reduce complexity but applica-
tion is scarce both in collocated and GSD products.

Furthermore, many challenges and practices seem to
even mirror each other, such as C1 (Inability to match
architecture to organization) and P1 (Ensure architecture
and organization match). On such a general level, prac-
tices are not very helpful. This, however, is the level at
which practices are often reported. To aid the practical de-
sign process, our concern framework was designed to bring
practices to a more concrete level.

5.1. Checklists

Taking the concerns a step closer to practice we present
checklists for the practitioner. The checklists are given in
table form with a question, rationale behind the question
and an example answer (see Tables I-VII in Appendix B).
The questions and rationale are based on the primary stud-
ies of the SLR. Questions were formulated by examining
the high level analysis of the data synthesis (themes) to-
gether with the original text extracts and reworking the
data into question format. The theme gave a context into
which the extract was tied. Focusing on a detailed ex-
tract allowed us to pinpoint very concrete issues, which,

in turn, could be reworked into straightforward questions.
To clarify this process, we will present an example from
the checklist for AKM (Table III). Under this theme, we
had three quotes from the same source [SLR17]:

• ”Case study GLOembed applied a model in which
only architects between between the teams commu-
nicated with each other an a lead architect travelled
to all the different team sites to communicate a bout
the strategic plans and road maps”

• ”All these teams were dependent on a central and
top-down unit for inter-team coordination, which im-
plied challenges in .. coordination needed for inte-
gration, and high dependency on one lead architect”

• ”Teams were geographically split, with the team lead
architect and senior engineers located at the main
site of the organization ... This required significant
communication taking place over geographical bound-
aries resulting in very inefficient development pro-
cesses.

Together these quotes were condensed into one check-
list question for AKM: Is architectural design dependent
on a single person / or centralized team?

In our example answers, based on our own background
and experience, we have considered the issues for a GSD
company while using Scrum. We present the checklists and
provided sample answers in interview format. Thus, please
note that example answers are not intended as guidelines!
The purpose of giving these example answers is to help
practitioners achieve better focus on the given questions,
as at first sight some questions may seem rather broad.

We found that there was a gap in current literature
about where Conway’s law applies - whether it goes beyond
composition and structure. Furthermore, we raised the
issue as to whether resources and skills could be taken
into account when matching architecture to organization.
While some answers are incomplete in terms of offering
solutions, the checklist for organizational aspects in Table
I should help the practitioner to fill the gap.

Cross-cutting themes from project management aspects
and architecting are collected in Ways of Working, and the
checklist for related concerns is given in Table II.

AKM issues have been the subject of intensive research,
and they are an essential part of architectural design in
GSD. Table III presents a checklist for AKM concerns.
The challenges brought by global distance are particularly
apparent in the AKM concerns, which highlight the need
to ensure dispersion of knowledge and effective communi-
cation despite working in different time zones and coun-
tries.

There appeared to be an especially large gap in cur-
rent literature regarding quality management, particularly
when considering how critical quality is. Our SLR did not
reveal any quality related practices. However, the check-
list for quality management concerns as given in Table IV

17



will aid raising quality issues within the organization and
identifying gaps in processes.

Change management is closely linked to quality man-
agement, as quality often deteriorates due to lack of com-
pliance to (changing) requirements. A checklist for change
management concerns is given in Table V.

Based on related work, modularity was a key concept
in architecting in GSD. What remained unanswered was
the level at which modularity is actually considered. The
checklists for design practices in Table VI and for modu-
larity related concerns in Table VII will support the prac-
titioner in recognizing both the current working practices
and potential gaps in the processes that the organization
may want to consider.

5.2. Limitations and Validity

There are some limitations that must be addressed re-
garding our SLR, namely completeness, potential bias and
limits to data synthesis. Limitations are discussed in sub-
section 5.2.1. In addition to limitations, as with any study,
we must consider the potential threats to the validity of
our results. Threats to validity, following Maxwell’s cate-
gorization [67] and guidelines for fitting the categories to
software engineering by Petersen and Gencel [68], are dis-
cussed in subsection 5.2.2.

5.2.1. Limitations

We have searched 6 of the most common and well-
known databases containing software engineering litera-
ture. We have used as wide a range of search terms as
possible, derived from the taxonomy by Smite et al. [62]
to cover variations of terminology. Additionally, search
terms were amended to suit particular databases after first
searches if results were clearly skewed. All results or rel-
evant results of which the authors were previously aware
showed up in the search. Thus we have done our best to
strive for an extensive coverage of the field. Using valida-
tion throughout the review process also ensured that all
authors followed inclusion and exclusion criteria similarly.
However, we do recognize that as the volume of material
in this field is large, some work might still be left out un-
intentionally.

We also consider potential bias. The selection has been
validated by two researchers (in addition to the researcher
doing the initial selection) to ensure objectivity. Further-
more, the primary author of this work has not co-authored
any of the included studies in the SLR, thus a researcher
independent of the original work has reviewed every study.
To investigate the potential bias of the primary studies we
performed sensitivity analysis. The results of the analysis
show that a majority of the studies originate from USA
and Europe, and thus mainly reflect the Western view-
point of GSD. Furthermore, we found a publishing peak,
as a large number of studies were published in 2010. We
did not find a particular reason for such a peak - it may
just be that interest in GSD and particularly architecting

aspects increased in the previous years and a large number
of researchers were simultaneously active at that point.

Finally, there are limits regarding our data synthesis.
We chose to use thematic analysis, which potentially lacks
in transparency. To address these shortcomings, every
step of the analysis has been carefully logged so choices
for themes can be backtracked. Furthermore, each theme,
practice, challenge and concern has been reviewed by at
least two independent researchers. Therefore, how an in-
dividual article contributes to each theme has been val-
idated. However, challenges and recommended practices
may have lost clarity when condensing themes, and the-
matic borders may be unclear in parts, as there is sig-
nificant overlap between certain practices and challenges
particularly regarding organization, design practices and
task allocation.

5.2.2. Threats to Validity

Descriptive and Theoretical Validity
Descriptive validity concerns accurate recording and

presentation of the data on which conclusions are made.
As the research method was a literature review and all ma-
terial was thus in written form, descriptive validity threats
are not a real concern in our case. Theoretical validity, in
turn, concerns selection of subjects, instrumentation for
data collection, definition of constructs, and other matters
related to whether the data, and more importantly, the
conclusions drawn from the data, can be trusted. Our data
collection methodology was based on commonly agreed
standards as presented by Kitchenham [59]. Definition
of constructs and selection of subjects (defining popula-
tion and inclusion and exclusion criteria) was done in an
attempt to gain as wide a selection of studies as possible
that would still answer the given research question as ac-
curately as possible. A possible threat to validity relates
to not considering the validity of the studies involved, i.e.,
we did not perform an evaluation of the validation or eval-
uation of the results in individual studies.

Interpretive Validity and Generalizability
Interpretive validity threats concern correct interpreta-

tions of the material. Validity threats related to interpre-
tations have been dealt through rigorous validation of the
thematic analysis by several objective researchers. First,
the primary researcher who made the first interpretation
of the material (”Does the literature discuss challenges or
recommended practices?”) had no previous publications in
the area, and was thus an objective researcher. Second,
other researchers checked verbatim quotes from studies
and confirmed or disagreed with the interpretation of their
content. Finally, the conceptual model, mapping of prac-
tices to the model and mapping of the low-level concerns
to the high-level model were similarly validated. Thus,
we are confident that validity threats to interpretive va-
lidity have been taken care of. Regarding generalizability,
we are confident that internal generalizability (within the
field of software engineering) is satisfied due to the wide

18



selection criteria for the studies. That is, there is no rea-
son to believe that the results would not in general apply
to companies in the field of software engineering involved
in GSD. However, we do recognize that architectural de-
sign practices vary depending on company type, size and
used processes, and unfortunately we did not have enough
data to make conclusions on the link between this back-
groud and used practices. External generalizability (to
other fields) is not expected.

6. Conclusion

In this paper we conducted a systematic literature re-
view of 55 papers that addressed our research questions
which focused on challenges and recommended practices
for architectural design in GSD.

We found that while there were no larger studies around
the topic and individual papers only provided small con-
tributions, through thematic analysis and collecting the
information from the material we could identify several
challenges and practices associated with our key themes:
Organization (with sub-themes Structure and Resources),
Ways of Working (with sub-themes AKM, Change Man-
agement, Quality Management), Design Practices, Modu-
larity and Task Allocation.

In order to provide guidelines for GSD architecture
design decisions, we mapped the challenges to practices
found in the literature according to whether they were fo-
cused on project management or design decisions.

The core findings of the challenges and recommended
practices were issues due to lack of communication and
awareness, the difficulties and practices associated with
task allocation, and the importance of following commonly
accepted and proven architecture design practices. We also
found that a clear majority of the identified challenges are
the result of the distributed nature of the architecture de-
sign process and that the teams implementing this process
and building the product are distributed. To address the
challenges raised by GSD, we had expected to uncover
design practices that are especially tailored for this con-
text. However, only four of the nine practices we found
are driven by global distribution:

1. Ensure that organization/work allocation is compli-
ant with architecture design (P1)

2. Ensure knowledge of architectural artefacts and prac-
tices across sites with communication (P4)

3. Use a team of architects to collect and distribute the
knowledge (P6)

4. Consider available resources from different sites in
the design (P9)

Five out of nine of all the identified practices are quite
common architectural guidelines that also apply when in-
volved in collocated design. This raises the question: Does
architecting (design decisions) in GSD actually differ sig-
nificantly from collocated architecting, or is it just that

there is not enough information available about how to ef-
ficiently take the distributed nature of development work
into account when doing the design?

In addition to mapping the challenges and practices
found in the literature, we elicited a concern framework
around those challenges and practices to make them more
accessible to practitioners. We further complemented the
framework with checklists, which should aid architecting
in practice. In our future work, we will report how our con-
cern framework corresponds to current architecting prac-
tices in GSD, as we are now validating the findings of this
SLR with an interview study of architects from seven dif-
ferent companies practicing GSD.

Acknowledgments

The work of the first author was supported by the
Academy of Finland. This work was partially supported
(second and third author) with the financial support of
the Science Foundation Ireland grant 13/RC/2094 and co-
funded under the European Regional Development Fund
through the Southern & Eastern Regional Operational Pro-
gramme to Lero – the Irish Software Research Centre
(www.lero.ie).

Selected 55 Papers for the SLR

[SLR1] J. D. Herbsleb, Global software engineering: the future of
socio-technical coordination, in: Proceedings of the Future
of Software Engineering (FOSE’07), 2007, pp. 188–198.

[SLR2] A. Mockus, D. M. Weiss, Globalization by chunking: a quan-
titative approach, IEEE Software 18 (2) (2001) 30–37.

[SLR3] G. Mustapic, A. Wall, C. Norstrom, I. Crnkovic, K. Sand-
strom, J. Froberg, J. Andersson, Real world influences on
software architecture - interviews with industrial system ex-
perts, in: Proceedings of the Fourth Working IEEE/IFIP
Conference on Software Architecture (WICSA’04), 2004, pp.
101–111.

[SLR4] P. Ovaska, M. Rossi, P. Marttiin, Architecture as a coor-
dination tool in multi-site software development, Software
Process: Improvement and Practice 8 (4) (2003) 233–247.

[SLR5] D. Balasubramaniam, R. Morrison, R. M. Greenwood,
B. Warboys, Flexible software development: From soft-
ware architecture to process, in: Proceedings of The
Working IEEE/IFIP Conference on Software Architecture,
WICSA’07, 2007, pp. 14–14.

[SLR6] W. H. Huen, Systems engineering of complex software sys-
tems, in: Proceedings of the 37th Annual Frontiers in Edu-
cation Conference, Global Engineering : Knowledge without
Borders - Opportunities without Passports, Vols 1- 4, 2007,
pp. 553–558.

[SLR7] D. A. Tamburri, P. Lago, C. Dorn, R. Hilliard, Architect-
ing in networked organizations, in: Proceedings of the 2014
IEEE/IFIP Conference on Software Architecture (WICSA),
2014, pp. 247–250.

[SLR8] R. Britto, D. Šmite, L.-O. Damm, Software architects in
large-scale distributed projects: An ericsson case study,
IEEE Software, Special issue on Software Architect’s Role
in the Digital Age 33 (6) (2016) 48–55.

[SLR9] M. Bass, V. Mikulovic, L. Bass, H. James, C. Marcelo, Ar-
chitectural misalignment: An experience report, in: Pro-
ceedings of The Working IEEE/IFIP Conference on Software
Architecture WICSA’07, 2007, pp. 17–17.

19



[SLR10] S. Betz, D. ŠMite, S. Fricker, A. Moss, W. Afzal, M. Svahn-
berg, C. Wohlin, J. Borstler, T. Gorschek, An evolution-
ary perspective on socio-technical congruence: The rubber
band effect, in: Proceedings of 3rd International Workshop
on Replication in Empirical Software Engineering Research
(RESER), 2013, pp. 15–24.

[SLR11] P. Lago, R. Farenhorst, P. Avgeriou, R. de Boer, V. Clerc,
A. Jansen, H. van Vliet, The griffin collaborative virtual
community for architectural knowledge management, in:
Collaborative Software Engineering, Springer Berlin Heidel-
berg, 2010, pp. 195–217.

[SLR12] B. Tekinerdogan, S. Cetin, M. A. Babar, P. Lago,
J. Mäkiö, Architecting in global software engineering, SIG-
SOFT Softw.Eng.Notes 37 (1) (2012) 1–7.

[SLR13] T. A. B. Pereira, V. S. dos Santos, B. L. Ribeiro, G. Elias,
A recommendation framework for allocating global software
teams in software product line projects, in: Proceedings of
the 2Nd International Workshop on Recommendation Sys-
tems for Software Engineering, ACM, 2010, pp. 36–40.

[SLR14] R. S. Sangwan, J. Ros, Architecture leadership and man-
agement in globally distributed software development, in:
Proceedings of the First International Workshop on Leader-
ship and Management in Software Architecture, ACM, New
York, NY, USA, 2008, pp. 17–22.

[SLR15] M. Che, D.E.Perry, Evaluating architectural design deci-
sion paradigms in global software development, International
Journal on Software Engineering and Knowledge manage-
ment 25 (2015) 1677–1692.

[SLR16] J. D. Herbsleb, D. J. Paulish, M. Bass, Global software
development at siemens: Experience from nine projects, in:
Proceedings of the 27th International Conference on Soft-
ware Engineering (ICSE 2005), 2005, pp. 524–533.

[SLR17] J. Bosch, P. Bosch-Sijtsema, Coordination Between Global
Agile Teams: From Process to Architecture, Springer Berlin
Heidelberg, 2010, pp. 217–233.

[SLR18] F. Salger, G. Engels, A. Hofmann, Assessments in global
software development: a tailorable framework for industrial
projects, in: Proceedings of the 2010 ACM/IEEE 32nd In-
ternational Conference on Software Engineering, 2010, pp.
29–38.

[SLR19] A. Lamersdorf, J. Munch, D. Rombach, A survey on the
state of the practice in distributed software development:
Criteria for task allocation, in: Proceedings of Fourth IEEE
International Conference on Global Software Engineering
(ICGSE’09), 2009, pp. 41–50.

[SLR20] J. A. Laredo, R. Ranjan, Continuous improvement through
iterative development in a multi-geography environment,
in: Proceedings of Third IEEE International Conference on
Global Software Engineering (ICGSE’08), 2008, pp. 232–236.

[SLR21] J. Sauer, Architecture-Centric Development in Globally
Distributed Projects, Springer Berlin Heidelberg, 2010, pp.
321–329.

[SLR22] A. Bucchiarone, N. Dragoni, S. Dustdar, S. T. Larsen,
M. Mazzara, From monolithic to microservices: An experi-
ence report from the banking domain, IEEE Software 35 (3)
(2018) 50–55. doi:10.1109/MS.2018.2141026.

[SLR23] S. Beecham, J. Noll, I. Richardson, N. Ali, Crafting a global
teaming model for architectural knowledge, in: Proceedings
of the 5th IEEE International Conference on Global Software
Engineering (ICGSE), 2010, pp. 55–63.

[SLR24] V. Clerc, P. Lago, H. van Vliet, Global software develop-
ment: Are architectural rules the answer?, in: Proceedings
of Second IEEE International Conference on Global Software
Engineering (ICGSE’07), 2007, pp. 225–234.

[SLR25] S. Vaikar, M. M. Jha, F. Brunner, Using architectural
constraints to drive software component reuse while adding
and enhancing features, in: Proceedings of the 11th IEEE
International Conference on Global Software Engineering
(ICGSE’16), 2016, pp. 139–143.

[SLR26] F. Salger, Software architecture evaluation in global soft-
ware development projects, in: Proceedings of OTM 2009:

On the Move to Meaningful Internet Systems, Springer
Berlin Heidelberg, 2009, pp. 391–400.

[SLR27] T. Burity, G. Elias, A quantitative, evidence-based ap-
proach for recommending software modules, in: Proceedings
of ACM Symposium of Applied Computing (SAC’15), 2015,
pp. 1449–1456.

[SLR28] R. P. dos Santos, C. M. L. Werner, Reuseecos: An ap-
proach to support global software development through soft-
ware ecosystems, in: IEEE Seventh International Conference
on Global Software Engineering Workshops (ICGSEW’12),
2012, pp. 60–65.

[SLR29] J. Bang, D. Popescu, G. Edwards, N. Medvidovic,
N. Kulkarni, G. M. Rama, S. Padmanabhuni, Codesign:
A highly extensible collaborative software modeling frame-
work, in: Proceedings of the 32Nd ACM/IEEE International
Conference on Software Engineering - Volume 2, ACM, New
York, NY, USA, 2010, pp. 243–246.

[SLR30] M. Cataldo, C. Shelton, C. Yongjoon, H. Yun-Yin,
V. Ramesh, D. Saini, W. L.-Y. Wang, Camel: A tool for
collaborative distributed software design, in: Proceedings of
the Fourth IEEE International Conference on Global Soft-
ware Engineering (ICGSE’09), 2009, pp. 83–92.

[SLR31] A. Corry, K. Hansen, D. Svensson, Traveling architects - a
new way of herding cats, in: Proceedings of the International
Conference on the Quality of Software Architectures (QoSA
2006), Springer Berlin Heidelberg, 2006, pp. 111–126.

[SLR32] B. M. Yildiz, B. Tekinerdogan, Architectural viewpoints
for global software development, in: Proceedings of the 2011
Sixth IEEE International Conference on Global Software En-
gineering Workshop (ICGSEW), 2011, pp. 9–16.

[SLR33] B. M. Yildiz, B. Tekinerdogan, S. Cetin, A tool framework
for deriving the application architecture for global software
development projects, in: Proceedings of the 2012 Seventh
IEEE International Conference on Global Software Engi-
neering (ICGSE), 2012, pp. 94–103.

[SLR34] O. Tufekci, S. Cetin, A. Arifoglu, Proposing a federated
approach to global software development, in: Proceedings
of the Fourth International Conference on Digital Society,
2010. ICDS’10., 2010, pp. 150–157.

[SLR35] G. Borrego, A. Morá, R. Palacio, O.M.Rodriguez, Un-
derstanding architectural knowledge sharing in agsd teams:
an empirical study, in: Proceedings of the 11th IEEE
International Conference on Global Software Engineering
(ICGSE’16), 2016, pp. 109–118.

[SLR36] K. Popovic̀, Z. Hocenski, G. Martinovic, Do the software
architects get the needed support for the job they perform?,
in: Proceedings of the 2010 Fifth International Conference
on Software Engineering Advances (ICSEA), 2010, pp. 123–
128.

[SLR37] M. Paasivaara, C. Lassenius, Scaling scrum in a large glob-
ally distributed organization: a case study, in: Proceedings
of the 11th IEEE International Conference on Global Soft-
ware Engineering (ICGSE’16), 2016, pp. 75–83.

[SLR38] V. Clerc, P. Lago, H. van Vliet, Architectural knowledge
management practices in agile global software development,
in: Proceedings of the Fourth IEEE International Conference
on Global Software Engineering Workshop (ICGSEW’11),
2011, pp. 1–8.

[SLR39] G. Borrego, A. Morán, R. Palacio, O.M.Rodriguez, Find-
ings on agsd architectural knowledge sharing, in: Proceed-
ings of the 11th IEEE International Conference on Global
Software Engineering (ICGSE’16), 2016, pp. 193–194.

[SLR40] D. Rost, M. Naab, C. Lima, C. von Flach Garcia Chavez,
Software architecture documentation for developers: A sur-
vey, in: Proceedings of the European Conference on Software
Architecture (ECSA’13), Vol. 7957, 2013, pp. 72–88.

[SLR41] G. Borrego, A. L. Morn, R. Palacio, Preliminary evalua-
tion of a tag-based knowledge condensation tool in agile and
distributed teams, in: 2017 IEEE 12th International Con-
ference on Global Software Engineering (ICGSE), 2017, pp.
51–55. doi:10.1109/ICGSE.2017.14.

20



[SLR42] R. B. Svensson, A. Aurum, B. Paech, T. Grschek,
D. Sharma, Software architecture as a means of communi-
cation in a globally distributed software development con-
text, in: Proceedings of the International Conference on
Product Focused Software Process Improvement (PROFES
2012), Springer Berlin Heidelberg, 2012, pp. 175–189.

[SLR43] V. Clerc, E. de Vries P. Lago, Using wikis to support ar-
chitectural knowledge management in global software devel-
opment, in: Proceedings of the 2010 ICSE Workshop on
Sharing and Reusing Architectural Knowledge, ACM, 2010,
pp. 37–43.

[SLR44] J. M. Bass, Artefacts and agile method tailoring in large-
scale offshore software development programs, Information
and Software Technology 75 (2016) 1–16.

[SLR45] J.M.Bass, How product owner teams scale agile methods to
large distributed enterprises, Empirical Software Engineer-
ing 20 (2015) 1525–1557.

[SLR46] H. R. de Faria, G. Adler, Architecture-centric global soft-
ware processes, in: Proceedings of the IEEE International
Conference on Global Software Engineering (ICGSE’06),
2006, pp. 241–242.

[SLR47] L. G. Bratthall, R. van der Geest, H. Hofmann, E. Jellum,
Z. Korendo, R. Martinez, M. Orkisz, C. Zeidler, J. S. An-
dersson, Integrating hundred’s of products through one ar-
chitecture – the industrial it architecture, in: Proceedings of
the 24th International Conference on Software Engineering,
IEEE, 2002, pp. 604–614.

[SLR48] J. Rudzki, I. Hammouda, T. Mikkonen, Ensuring architec-
ture conventions in multi-site development, in: Proceedings
of 32nd Annual IEEE International Computer Software and
Applications Conference, 2008 (COMPSAC ’08), 2008, pp.
339–346.

[SLR49] G. Caprihan, Managing software performance in the glob-
ally distributed software development paradigm, in: Pro-
ceedings of the IEEE International Conference on Global
Software Engineering (ICGSE), 2006, pp. 84–91.

[SLR50] J. Herbsleb, R. E. Grinter, Architectures, coordination, and
distance: Conway’s law and beyond, IEEE Software 16 (5)
(1999) 63–70.

[SLR51] V. Clerc, Do architectural knowledge product measures
make a difference in gsd?, in: Proceedings of the Fourth
IEEE International Conference on Global Software Engi-
neering (ICGSE’09), 2009, pp. 382–387.

[SLR52] J. M. Bass, Agile method tailoring in distributed enter-
prises: Product owner teams, in: Proceedings of the IEEE
8th International Conference on Global Software Engineer-
ing (ICGSE 2013), 2013, pp. 154–163.

[SLR53] N. Ali, S. Beecham, I. Mistrik, Architectural knowledge
management in global software development: A review, in:
Proceedings of ICGSE’10, IEEE, 2010, pp. 347–352.

[SLR54] M. Cataldo, J. D. Herbsleb, K. M. Carley, Socio-technical
congruence: A framework for assessing the impact of tech-
nical and work dependencies on software development pro-
ductivity, in: Proceedings of the Second ACM-IEEE Inter-
national Symposium on Empirical Software Engineering and
Measurement, ACM, 2008, pp. 2–11.

[SLR55] A. Mishra, D. Mishra, Software architecture in distributed
software development: A review, in: Proceedings of OTM
2013: On the Move to Meaningful Internet Systems: OTM
2013 Workshops, Vol. 8186, Springer Berlin Heidelberg,
2013, pp. 284–291.

References

[1] S. Sahay, B. Nicholson, and S. Krishna, Global IT Outsourcing:
Software Development Across Borders. Cambridge University
Press, 2003.

[2] B. Tekinerdogan, S. Cetin, M. A. Babar, P. Lago, and
J. Mäkiö, “Architecting in global software engineering,” SIG-
SOFT Softw.Eng.Notes, vol. 37, no. 1, pp. 1–7, 2012.

[3] V. Clerc, P. Lago, and H. van Vliet, “Global software devel-
opment: Are architectural rules the answer?” in Proceedings
of Second IEEE International Conference on Global Software
Engineering (ICGSE’07), 2007, pp. 225–234.

[4] M. Conway, “How do committees invent?” Datamation, vol. 14,
no. 4, pp. 28–31, 1968.

[5] A. M. D. Santana, F. Q. B. da Silva, R. C. G. de Miranda, A. A.
Mascaro, T. B. Gouveia, C. v. F: Monteiro, and A. L. M. Santos,
“Relationships between communication structure and software
architecture: An empirical investigation of the Conway’s law at
the federal university of Pernambuco,” in Proceedings of the 3rd
International Workshop on Replication in Empirical Software
Engineering Research (RESER). IEEE, 2013, pp. 34–42.

[6] M. Bano, D. Zowghi, and N. Sarkissian, “Empirical study of
communication structures and barriers in geographically dis-
tributed teams.” IET Software, vol. 10, no. 5, pp. 147–153,
2016.

[7] S. Imtiaz and N. Ikram, “Dynamics of task allocation in global
software development,” J. Softw. Evol. and Proc, 2016.

[8] J. M. Verner, O. P. Brereton, B. A. Kitchenham, M. Turner,
and M. Niazi, “Systematic literature reviews in global software
development: A tertiary study,” in Proceedings of EASE’12,
2012, pp. 2–11.

[9] C. Wohlin, D. Šmite, and N. B. Moe, “A general theory of soft-
ware engineering: Balancing human, social and organizational
capitals,” Journal of Systems and Software, vol. 109, pp. 229–
242, 2015.

[10] J. Bosch, Design & Use of Software Architectures - Adopting
and Evolving a Product-Line Approach. Addison-Wesley, 2000.

[11] D. L. Parnas, “A technique for software module specification
with examples,” Commun. ACM, vol. 15, no. 5, pp. 330–336,
1972.

[12] ——, “On the criteria to be used in decomposing systems into
modules,” Commun. ACM, vol. 15, no. 12, pp. 1053–1058, 1972.

[13] D. L. Parnas, P. C. Clements, and D. M. Weiss, “The modu-
lar structure of complex systems,” IEEE Trans. Software Eng,
vol. 11, no. 3, pp. 259–266, 1985.

[14] G. Mustapic, A. Wall, C. Norstrom, I. Crnkovic, K. Sandstrom,
J. Froberg, and J. Andersson, “Real world influences on soft-
ware architecture - interviews with industrial system experts,”
in Proceedings of the Fourth Working IEEE/IFIP Conference
on Software Architecture (WICSA’04), 2004, pp. 101–111.

[15] I. Kwan, M. Cataldo, and D. Damian, “Conway’s law revis-
ited: The evidence for a task-based perspective,” IEEE Soft-
ware, vol. 29, no. 1, pp. 90–93, 2012.

[16] P. J. Ågerfalk, B. Fitzgerald, H. Olsson, and E. . Ó Conchúir,
“Benefits of global software development: the known and un-
known,” in Proceeginds of ICSP’08, vol. 5007. Springer, 2008,
pp. 1–9.

[17] D. Šmite, C. Wohlin, T. Gorschek, and R. Feldt, “Empirical evi-
dence in global software engineering: A systematic review,” Em-
pirical Software Engineering, vol. 15, no. 1, pp. 91–118, 2010.

[18] E. Ó Conchúir, P. øAgerfalk, H. Holmstrom, and B. Fitzger-
ald, “Global software development: Never mind the problems
- where are the benefits?” Comm. of the ACM, vol. 52, pp.
127–131, 2009.

[19] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter,
“An empirical study of global software development: distance
and speed,” in Proceedings of ICSE 2001, 2001, pp. 81–90.

[20] J. Kroll, I. Richardson, J. L. N. Audy, and J. Fernandez,
“Handoffs management in follow-the-sun software projects: A
case study,” in Proceegings of the 2014 47th Hawaii Interna-
tional Conference on System Science (HICSS’14), Waikoloa,
HI, 2014, pp. 331–339.

[21] J. Kroll, I. Richardson, and J. L. N. Audy, “FTS-SPM: A soft-
ware process model for follow the sun development: Preliminary
results,” in Proceedings of the 2014 IEEE International Con-
ference on Global Software Engineeering Workshops, 2014, pp.
21–26.

[22] J. Kroll, J. Audy, and R. Prikladnicki, “Mapping the evolution
of research on global software engineering: a systematic litera-

21



ture review,” in Proceedings of the International Conference on
Enterprise Information Systems (ICEIS?11), 2011.

[23] H. Holmström, E. Ó Conchúir, P. Ågerfalk, and B. Fitzger-
ald, “Global software development challenges: A case study on
temporal, geographical and socio-cultural distance,” in Proceed-
ings of International Conference on Global Software Engineer-
ing (ICGSE ’06), 2006, pp. 3 –11.

[24] P. J. Ågerfalk, B. Fitzgerald, H. Holmström, B. Lings, B. Lun-

dell, and E.Ó Conchúir, “A framework for considering opportu-
nities and threats in distributed software development,” in Pro-
ceedings of the International Workshop on Distributed Software
Development. Austrian Computer Society, 2005, pp. 47–61.

[25] C. Casey and I. Richardson, “Implementation of global soft-
ware development: A structured approach,” Journal of Soft-
ware Evolution and Process, vol. 14, no. 5, pp. 247–262, 2009.

[26] J. Noll, S. Beecham, and I. Richardson, “Global software de-
velopment and collaboration: barriers and solutions,” ACM In-
roads, vol. 1, no. 3, pp. 66–78, 2011.

[27] R. Prikladnicki and J. L. N. Audy, “Process models in the prac-
tice of distributed software development: A systematic review of
the literature,” Information and Software Technology, vol. 52,
no. 8, pp. 779–791, 2010.

[28] A. B. Marques, R. Rodrigues, and T. Conte, “Systematic liter-
ature reviews in distributed software development: A tertiary
study,” in Proceedings of the 2012 IEEE Seventh International
Conference on Global Software Engineering (ICGSE), 2012, pp.
134–143.

[29] F. Lanubile, D. Damian, and H. D. Oppenheimer, “Global soft-
ware development: technical, organizational and social chal-
lenges,” ACM SIGSOFT Software Engineering Notes, vol. 28,
no. 6, p. 2, 2003.

[30] M. Babar and C. Lescher, “Global software engineering: Iden-
tifying challenges is important and providing solutions is even
better,” Information and Software Technology, vol. 56, no. 1,
pp. 1–5, 2014.

[31] M. Jimenez, M. Piattini, and A. Vizaino, “Challenges and im-
provements in distributed software development: a systematic
review,” Advances in Software Engineering, pp. 1–16, 2009.

[32] J. D. Herbsleb, “Global software engineering: the future of
socio-technical coordination,” in Proceedings of the Future of
Software Engineering (FOSE’07), 2007, pp. 188–198.

[33] R. Britto, D. Šmite, and L.-O. Damm, “Software architects in
large-scale distributed projects: An Ericsson case study,” IEEE
Software, Special issue on Software Architect’s Role in the Dig-
ital Age, vol. 33, no. 6, pp. 48–55, 2016.

[34] ISO/IEC/IEEE, Systems and software engineering - Architec-
ture description, Std., Rev. 42010:2011, 2011.

[35] D. Garlan, “Software architecture: a roadmap,” in Proceed-
ings of the Conference on The Future of Software Engineering
(ICSE’00). New York, NY, USA: ACM, 2000, pp. 91–101.

[36] I. Crnkovic, “Component-based software engineering - new chal-
lenges in software development,” Software Focus, vol. 2, no. 4,
pp. 127–133, 2001.

[37] J. Herbsleb and R. E. Grinter, “Architectures, coordination, and
distance: Conway’s law and beyond,” IEEE Software, vol. 16,
no. 5, pp. 63–70, 1999.

[38] A. Avritzer, D. Paulish, Y. Cai, and K. Sethi, “Coordination
implications of software architecture in a global software devel-
opment project,” J. Syst. Software, vol. 83, no. 10, pp. 1881–
1895, 2010.

[39] M. Shaw and D. Garlan, Software Architecture - Perspectives
on an Emerging Discipline. Upper Saddle River, NJ: Prentice
Hall, 1996.

[40] E. Newcomer and G. Lomow, Understanding SOA with Web
Services. Addison-Wesley, 2005.

[41] “Rest,” http://www.restapitutorial.com/lessons/whatisrest.html,
accessed: 2017-02-28.

[42] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. W. Jr.,
J. E. Robbins, K. A. Nies, P. Oreizy, and D. L. Dubrow, “A
component- and message-based architectural style for GUI soft-
ware,” IEEE Transactions on Software Engineering, vol. 22,

no. 6, pp. 390–406, 1996.
[43] E. Wolff, Microservices: Flexible Software Architecture.

Addison-Wesley, 2016.
[44] I. Malavolta and R. Capilla, “Current research topics and trends

in the software architecture community: ICSA 2017 workshops
summary,” in 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW), April 2017, pp. 1–4.

[45] L. Qian, Z. Luo, Y. Du, and L. Guo, “Cloud computing: An
overview,” Cloud computing, pp. 626–631, 2009.

[46] G. Kulkarni, “Cloud computing-software as service,” Interna-
tional Journal of Cloud Computing and Services Science, vol. 1,
no. 1, p. 11, 2012.

[47] M. E. Fayad, D. C. Schmidt, and R. E. Johnson, Building Ap-
plication Frameworks: Object-Oriented Foundations of Frame-
work Design. New York, NY, USA: John Wiley & Sons, Inc.,
1999.

[48] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns, Elements of Reusable Object-Oriented Software. Boston,
MA: Addison-Wesley, 1995.

[49] G. Hohpe and B. Woolf, Enterprise Integration Patterns.
Addison-Wesley, 2004.

[50] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture, Patterns for Concur-
rent and Networked Objects. Vol. 2. John Wiley & Sons, 2013.

[51] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture: A System of
Patterns. John Wiley, 1996.

[52] A. G. J. Jansen and J. Bosch, “Software architecture as a
set of architectural design decisions,” in Proceedings of the
5th IEEE/IFIP Working Conference on Software Architecture
(WICSA 2005), 2005, pp. 109–119.

[53] U. van Heesch, V.-P. Eloranta, P. Avgeriou, K. Koskimies,
and N. Harrison, “Decision-centric architecture reviews,” IEEE
Software, vol. 31, no. 1, pp. 69–76, 2014.

[54] L. Lundberg, J. Bosch, D. Häggander, and P. O. Bengtsson,
“Quality attributes in software architecture design,” in Proceed-
ings of the Third International Conference on Software Engi-
neering and Applications, 1999, pp. 353–362.

[55] S. Vaikar, M. M. Jha, and F. Brunner, “Using architectural
constraints to drive software component reuse while adding and
enhancing features,” in Proceedings of ICGSE’16. IEEE, 2016,
pp. 139–143.

[56] N. Ali, S. Beecham, and I. Mistrik, “‘architectural knowledge
management in global software development: A review,” in Pro-
ceedings of ICGSE’10. IEEE, 2010, pp. 347–352.

[57] S. S. M. Fauzi, P. L. Bannerman, and M. Staples, “Software
configuration management in global software development: A
systematic map,” in Proceedings of the 2010 Asia Pacific Soft-
ware Engineering Conference, 2010, pp. 404–413.

[58] A. Mishra and D. Mishra, “Software architecture in distributed
software development: A review,” in Proceedings of OTM 2013:
On the Move to Meaningful Internet Systems: OTM 2013
Workshops, vol. 8186. Springer Berlin Heidelberg, 2013, pp.
284–291.

[59] B. Kitchenham, “Procedures for performing systematic re-
views,” p. 28 pages, 2004.

[60] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Berlin-
Heidelberg, Germany: Springer-Verlag, 2012.

[61] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp,
“Protocol of a systematic literature review of motivation in soft-
ware engineering,” UK, 2006.

[62] D. Šmite, C. Wohlin, Z. Galvina, and R. Prikladnicki, “An em-
pirically based terminology and taxonomy for global software
engineering,” Empirical Software Engineering, vol. 19, no. 1,
2014.

[63] V. Braun and V. Clarke, “Using thematic analysis in psychol-
ogy,” Qualitative Research in Psychology, vol. 3, no. 2, pp. 77–
101, 2006.

[64] D. Cruzes and T. Dyb̊a, “Research synthesis in software engi-
neering: a tertiary study,” Information and Software Technol-

22



ogy, vol. 53, pp. 440–455, 2011.
[65] M. Dixon-Woods, S. Agarwal, B. Young, and A. Sutton, “Syn-

thesising qualitative and quantitative evidence: a review of
possible methods,” Journal of Health Services Reseach&Policy,
vol. 10, pp. 45–53, 2005.

[66] K. Charmaz, Constructing grounded theory. Sage, London,
2006.

[67] J. A. Maxwell, “Understanding and validity in qualitative re-
search,” Harvard educational review, vol. 62, pp. 279–301, 1992.

[68] K. Petersen and C. Gencel, ”Worldviews, research methods, and
their relationship to validity in empirical software engineering
research,” in Proceedings of the 2013 Joint Conference of
the 23Nd International Workshop on Software Measurement
(IWSM) and the 8th International Conference on Software
Process and Product Measurement, ser. IWSM-MENSURA’13.
Washington, DC, USA: IEEE Computer Society, 2013, pp.
81–89. [Online]. Available: http://dx.doi.org/10.1109/IWSM-
Mensura.2013.22

23



Appendix A. Review protocol, search strings and vali-
dation

The steps for our protocol (after defining research ques-
tions) were as follows:

1. Define population, intervention, outcomes of rele-
vance and experimental designs of interest;

2. Derive major terms from the questions by identifying
the population, intervention and outcome;

3. Identify alternative spellings and synonyms for ma-
jor terms;

4. Check the keywords in any relevant papers we al-
ready have;

5. When databases allow, use the Boolean OR to incor-
porate alternative spellings and synonyms;

6. When databases allow, use the Boolean AND to link
the major terms from population, intervention and
outcome.

Performing step 1 provided us with the following defi-
nitions: Population: Practitioners involved in either using
the architecture, or designing the architecture in a GSD
environment. Intervention: Architectural design for GSD,
Architectural decisions in GSD, Architectural knowledge
management in GSD. Outcomes of relevance: How soft-
ware architecture affects task allocation, How software ar-
chitecture affects product quality, How organizational struc-
ture affects software architecture design, How task allo-
cation affects product quality. Experimental designs of
interest: Empirical studies, experience reports, expert ob-
servations, reviews.

Performing step 2 provided us with the basic search
terms: RQ1: software architecture, design, challenges, glob-
ally distributed sites, developing software. RQ2: software
architecture, design, recommended practices, geographi-
cally distributed sites, software development.

Additionally, we were particularly interested if we could
find differences between between the architectural design
practices used in collocated and those used in globally dis-
tributed sites. Thus we also added the search term ”collo-
cated”. An additional search was performed with a search
string combining terms for RQ2 and ”collocated”.

For step 3 we identified alternative spellings and terms.
For example, we decided that process and practice would
be combined as synonyms for the same term. After also
checking keywords (step 4), and using Boolean operators
(step 5) we got the following terms to use in our search:
Software architecture: software architect* OR system
architect* OR software product architect*
Design: design* OR develop* OR produc*
Software development: (software OR system*) AND
(develop* OR engineer* OR produc*)
Collocated: collocate* OR same site* OR samesite OR
same-site* OR one site* OR one-site* OR onesite* OR lo-
cal* OR same location
Geographically distributed sites: GSD OR DSD OR

GSE OR DSE OR (distribut* OR multisite* OR global
OR multi-site* OR offsite OR off-site OR offshore* OR
off-shor* OR insource* OR in-sourc* OR multisource* OR
multi-sourc* OR farshor* OR far-shor* OR many site* OR
different location* OR distributed sites)
Recommended: good OR best OR recommend* OR pre-
fer* OR common Process or Practice: practice* OR guide-
line* OR framework OR model OR pattern OR custom
OR way OR process OR procedure OR protocol*
Challenges: challeng* OR problem* OR restriction* OR
constrain* OR difficult* OR question*
The actual search strings were constructed by combining
all given spellings and synonyms of one term by using the
OR operator, and combining all terms related to a research
question with the AND operator (step 6). For example,
the search string for RQ1 was thus:

(software architect* OR system architect* OR software
product architect*) AND (design* OR develop* OR pro-
duc*) AND (challeng* OR problem* OR restriction* OR
constrain* OR difficult* OR question*) AND (GSD OR
DSD OR GSE OR DSE OR (distribut* OR multisite* OR
global OR multi-site* OR offsite OR off-site OR offshore*
OR off-shor* OR insource* OR in-sourc* OR multisource*
OR multi-sourc* OR farshor* OR far-shor* OR many site*
OR different location* OR distributed sites) AND soft-
ware AND (engineer* OR develop*) AND ((software OR
system*) AND (develop* OR engineer* OR produc*) )

We searched the following databases (in this order):

• IEEE Explore

• ACM Digital library

• SpringerLink

• ScienceDirect

• Wiley digital library

• ISI Web of Knowledge

Google Scholar was excluded as it would not allow a de-
tailed enough search string. For some databases we could
not use all the search terms due to limitations in the num-
ber of allowed terms, and also could not combine different
searches with subsets of search terms. In those cases we
would use search terms related to software architecture,
design, collocated and distributed sites, and use the fol-
lowing inclusion criteria:

Include only papers with good/best/recommended prac-
tices/processes/framework/model/pattern or challenges

Review process validation
The searches produced a total of 1197 unique references.
One author was primarily in charge of selecting the papers,
but as per the four eyes principle, selections were validated
by other authors. The selection process and validation pro-
ceeded as follows. The primary author went through each
paper’s title and abstract, and made a decision to either

24



include or exclude it based on the given criteria. After
this, two other authors were both given 100 paper’s titles
and abstracts each, and they performed a similar selection
process. The papers given for validation were selected at
random, only making sure that there were a representa-
tive number of papers the primary author had accepted to
ensure comparison of decisions. The decisions of different
authors were then checked we set a limit that initially we
should agree on 80% of the cases; otherwise the criteria
and/or the selection process should be re-investigated. If
two authors had made a different decision (one said to in-
clude the paper, the other to exclude), the authors would
negotiate and justify their choices. If they could not reach
a consensus on what to do, the third author would have
the final say. After the validation phase, 135 papers were
included for the next phase. Next, the full texts of all
included papers would be read. A paper would then be
included if it could provide direct answers to the research
questions and also still fit the inclusion/exclusion criteria.
Once again the selection was validated by giving a set of
full papers to two other authors each to read. These papers
were again selected randomly, only ensuring that there
were ones that the primary author had accepted as well as
rejected ones. Conflicting selections were negotiated sim-
ilarly as in the previous phase. After going through the
full texts, we had 46 references to include in the review.
To cover all potential studies, we also checked the refer-
ence sections within the selected 46 papers i.e., performed
”backward snowballing, as recommended by Kitchenham
[59]. From the reference lists we found 33 potential titles
that had not been included in our original search. Note,
that for review articles some papers cited in the review
articles were selected for the SLR and some not, thus the
review articles contain more information than the articles
cited by them that are included as individual articles in the
SLR. A full-text screening was performed for all these ti-
tle which resulted in an additional 9 studies for the review.
Thus, the final number of the reviewed papers published
by May 2018 is 55.

25



Appendix B: Checklists

26



Table I: Checklist for organizational concerns

Question Rationale
Example answer in a company using
Scrum

What kind of organi-
zational aspects are
considered during
design - are all
necessary aspects
covered?

Design is more likely to stay stable during de-
velopment and task allocation is easier if orga-
nizational aspects are considered beforehand.

We have considered organization reporting
hierarchy, business goals, practices for com-
ponent reuse and application of Scrum. No-
tice that have not considered how to handle
maintenance and changes with a distributed
team of architects.

Does the software
structure guide the
organization or
vice versa? Do the
structures match?

Conway’s law suggests that the architecture
will mirror the organization (communication
structure). More specifically task allocation
will likely mirror the communication structure.

We have considered where teams are allo-
cated, which teams will handle which tasks
and which teams will need to communicate
with each other when designing – thus taken
care to separate modules or tasks accord-
ingly and that the structures match.

What kind of prac-
tices are there to
scale down tasks - do
they work?

Poorly defined tasks may be too large for
one team (or person) to handle, resulting in
scheduling and synchronization problems and
possibly lead to tasks across sites when extra
resources are required.

We allocate large tasks per site and the
site manager takes care of scaling down the
tasks per team.

On what scale is
work structure con-
sidered?

Relates to previous question on scaling down
work items.

See above.

Are the available
resources consid-
ered/do they act as
a driving force for
the design?

Recognizing resources helps assure that prod-
uct architecture matches the design. Resources
here mean primarily skills, but also available
personnel and schedule (effort), budget, avail-
able components for reuse, licenses, etc.

Architecture is designed with available per-
sonnel, reusable components and platform
in mind.

How is the distribu-
tion of the resources
considered?

Here resources means people and skills. Dis-
tribution of skills is important to recognize,
if some tasks require several specialized skills
that span across sites. Sharing skills is more
difficult between sites.

Distribution of skills is not considered be-
forehand. Will need to possibly rethink work
structure.

Are there sufficient
practices to match
code for available re-
sources?

There is a need to recognize skills and avail-
able manpower and scale down work items to
a sufficiently fine-grained level when planning
task allocation. Tasks should be doable by one
(single-site) team.

We allocate large tasks per site and the
site manager takes care of scaling down the
tasks per team. Site manager knows his
team members and their skills.

Are there working
practices to align de-
cisions to organiza-
tion structure?

Large-scale design decisions may affect re-
quired skills and therefore also task allocation
as much as modular structure.

Architecture is evaluated after each design
iteration to check that decisions comply with
organization.

Are there work-
ing practices to
handle misaligned
interests?

Undesirability of some tasks is a problem es-
pecially in remote sites when rationale behind
some tasks may not be understood or teams
feel their expertise does not correspond with
the task’s requirements.

Site managers will assign tasks. The archi-
tect is responsible that all tasks are com-
pleted in schedule. If necessary, the ar-
chitect will either aid the task manager in
breaking down the task to the teams, or seek
for other teams (if possible).

How are potential
conflicts (e.g., in
schedule) identified
and handled?

Conflicts are more difficult to spot when teams
are working in remote sites and thus if one
team is experiencing problems with, e.g., keep-
ing to agreed schedule, other sites may not be-
come aware in time.

Tasks are scheduled in weekly Scrum meet-
ings between architects and site managers.
Site managers will keep track of their teams’
status and report if schedule does not keep.27



Table II: Checklist for concerns related to ways of working

Question Rationale Example answer in a company using
Scrum

Are all stakeholders
identified and the
appropriate architec-
ture view composed
for their purposes?

It is important to identify all the stakeholders
who require architectural information. Stake-
holders may have different backgrounds, and
thus different views may need to be considered
for understandability and promoting aware-
ness.

Architecture is communicated only to devel-
opers on remote sites. Other stakeholders are
met on main site and appropriate views used.

Are diagrams drawn
with the stakeholder
in mind?

Follow-up to the previous question - consider-
ing the stakeholders background and agenda
and choosing the diagram accordingly will help
promote awareness and reach a better level of
understanding.

Less technical views are used for business
purposes. Developers are assumed to be
aware of common technical notations.

What kind of dia-
grams are used?

Many architects tend to favor UML, which are
not, however, understood by less technical peo-
ple or even developers with significantly differ-
ent backgrounds in terms of education.

Freeform and UML.

Are you using meth-
ods to calculate cou-
pling? Should such
methods be used?

Coupling is an easy measurement to calculate
dependencies between components. Tools and
analysis methods can be used to calculate cou-
pling values if dependencies within the archi-
tecture are otherwise overlooked or difficult to
find.

Coupling is calculated automatically from
code.

Are there visualiza-
tions of decisions or
metrics?

Calculating quality metrics from the architec-
ture may help finding potential bottlenecks
both in terms of quality and task allocation.
Visualizations can aid grasping large-scale de-
cisions.

A decision dependency diagram is created
based on links in artefact repository and wiki.

Is collaborative mod-
eling an option?

Collaborative modeling can help in situations
where teams tend to incorrectly assume func-
tionality of components developed by others.

We have chosen not to use collaborative mod-
eling.

28



Table III: Checklist for AKM concerns

Question Rationale Example answer in a company using
Scrum

Are all teams and
their relevant mem-
bers aware of the
architectural design
and decisions?

Not all developers need to be aware of the com-
plete architecture design, and it is often suf-
ficient that the teams know their own mod-
ules and interfacing modules. However, there
should be at least someone in the team who is
aware of the architecture and the rationale be-
hind the decisions. This is not self-evident in
distributed development.

Each site has representative architect, who
is responsible for further disseminating ar-
chitectural knowledge on that site.

Who is responsible
for the creation
of architectural
artefacts?

Evidence shows that particularly when deci-
sions are delegated there is uncertainty about
responsibilities.

The team of architects (one for each site)
is responsible for creation of architectural
artefacts.

Where are the arte-
facts stored?

Artefacts should be stored to one common
repository for easy access and dissemination.

There is a repository where diagrams, code
and other such artefacts are stored. Addi-
tionally, a wiki is used for documenting.

Do all the teams
have access to archi-
tectural artefacts?

Access to artefacts promotes awareness and in-
creases trust as teams do not feel left out or
that one site is favored over others.

Both the wiki and the repository are acces-
sible by all project members.

Are the artefacts
understood by (rep-
resentatives of) all
teams?

Architects may present some decisions as they
were directed to only other architects.

All artefacts are reviewed on team level and
thus they should be understandable. If a
team member requires information about an
artefact the on-site architect is responsible
for clarifications.

Is architectural doc-
umentation detailed
enough?

Particularly remote team members need more
specific documentation to compensate lack of
face-to-face discussions.

Lack of detail usually becomes apparent in
daily Scrums, where team members ask for
clarifications. We could have a better pro-
cess of ensuring enough detail while prepar-
ing the document.

Is architectural de-
sign dependent on
a single person/ or
centralized team?

Relying heavily on one chief architect may end
up being a bottleneck, as the chief architect will
be overwhelmed with information requests. A
centralized architecture team helps in answer-
ing questions, but is still not as affective as a
distributed team to promote awareness.

In our case we use a distributed team of ar-
chitects, one for each site.

What are the cur-
rent knowledge man-
agement practices?

Knowledge management practices should be
reviewed and evaluated for sufficiency at the
start of each project.

A shared repository, a common wiki and a
distributed team of architects who promote
awareness at sites.

How is the design
process arranged
with distributed
architects?

While a distributed team of architects aids in
terms of awareness, it brings more challenges
to the actual design process.

In the beginning of design the architects
meet in a collocated design workshop. After
that they have first online meetings twice
a week, and then weekly. Architects will
gather for a first review of the architecture,
after which online meetings are held again
more often. The need for communications
fluctuates during the design depending on
the state of the design.

What are the ar-
chitects’ backgrounds
and main drivers?

It is important to include a an architect with
sufficient technical background knowledge who
will be able to spot possible difficulties in de-
velopment more easily.

All architects have a technical background.

29



Table IV: Checklist for quality management concerns

Question Rationale Example answer in a company using
Scrum

How is quality en-
sured if design deci-
sions are delegated to
teams?

Small-level architectural decisions are com-
monly delegated to the teams in charge of de-
veloping the corresponding piece of software.
Quality may deteriorate if these decisions are
not checked in a coordinated fashion.

We use automated unit tests to check func-
tional correctness. Otherwise the on-site
architect is in charge for checking team level
decisions.

Who is responsible
for the quality con-
cerns?

Quality assurance is a vital but often over-
looked part of the design process. In a dis-
tributed setting where responsibilities easily
become unclear, quality assurance is particu-
larly something that needs a clearly assigned
person.

The architect team is responsible for meet-
ing the quality requirements.

How is quality
measured? Are
measures only for
functional tests or
are non-functional
requirements ad-
dressed as well?

Often quality is only measured as how many
tests are passed, and tests check for functional
quality (i.e., meeting functional requirements).
Measurements for meeting non-functional re-
quirements should be considered as well.

In addition to automated tests we have per-
formance tests. Architecture evaluations
are also held to check conformance to qual-
ity demands.

How is data and
state management
organized?

Centralized data and state management may
lead to unintentional dependencies, causing de-
teriorated quality and requiring more effort
in development due to added communication
needs.

Data and state management is done con-
sidering the best choice for the product. In-
dividual databases are used for testing pur-
poses per site.

30



Table V: Checklist for change management concerns

Question Rationale Example answer in a company using
Scrum

Are possible changes
in communication
structure consid-
ered in the design
structure?

Conway’s law states that organizations tend to
implement designs that mirror their (commu-
nication structure). This implies that critical
changes in communication structure should be
reflected in the architecture as well.

We are using Scrum, and thus some archi-
tectural decisions are left open until later in
the design. Within the limits of the core de-
sign we may thus address changes in com-
munication structure to a certain level.

Is the architecture
understandable in a
changing organiza-
tion?

One should be aware that if key resources
(member(s) of the architecture team) are no
longer available, the architecture should still be
understandable. If the organization undergoes
significant structural changes, an architecture
that was designed to reflect the previous orga-
nization structure may also seem complex in
the new organization.

Having a team of architects ensures a wide-
spread knowledge of the architecture. Dras-
tic changes in the organization structure
will lead to a review of the architecture.

Is the architecture
compliant with the
requirements?

Functional requirements have a tendency to
change over time, and quality requirements are
refined as well. Design should be checked for
conformance regularly.

Architects review changes in requirements
in their weekly meetings and possible
changes to design are disseminated to teams
in Scrum meetings by on-site architects.

Is ownership of ar-
chitectural elements
agreed upon?

In case decisions are largely delegated to teams,
there may be confusion on who is responsible
for particular architectural elements.

The team of architects share ownership and
decide amongst themselves a more detailed
division of responsibilities.

How is synchroniza-
tion handled?

Synchronization relates to synchronizing
tightly coupled work items and states as well
as release synchronization. Not all are obvious.

Tightly coupled items are managed by ar-
chitects. Release synchronization is handled
through Scrum practices.

Is the business pro-
cess known and con-
sidered while doing
the design?

The business process may affect how develop-
ment is done (in terms of using resources, han-
dling requirements, etc.), and, e.g., how off-
the-shelf components may be used.

The team of architects communicates freely
with the business management side of the
organization and is aware of the limits it
sets for design.

31



Table VI: Checklist for design practice concerns

Question Rationale Example answer in a company using
Scrum

What are the com-
mon design agree-
ments that consider
distributed develop-
ment?

Architects often do design based on their pre-
vious experiences on projects and commonly
agreed practices (found in, e.g., literature). It
is good to inspect whether these practices take
into account the distributed nature of develop-
ment work.

Extra effort is put to interface design and
definitions to ensure that interfaces are
implemented according to expectations and
agreements. Architecture should be divided
into small components but also kept simple.

What is required
from an interface
to make it ”well
defined”?

”Well-defined” interfaces is a common solution
for separation of components/modules/tasks,
but what is needed for an interface to be well-
defined varies.

All operation must have inputs and outputs
defined and a state diagram drawn.

How much instability
is caused due to the
distributed nature of
development?

Instability of architecture should be mini-
mized, as it effects quality of both product and
work, and may hinder efficient task allocation.

Using a team of architects promotes sta-
bility as design and development is coordi-
nated at each site.

Who defines prioriti-
zation?

Knowing dependencies within the architecture
is important for correct prioritization of design
and development tasks.

Prioritization is defined by architects and
site managers, who may delegate small scale
prioritization to team leaders.

How are design prin-
ciples recorded and
their use enforced?

Each design decision should be based on ra-
tionale or principles. Particularly in a chang-
ing organization it is important to also log the
rationale somewhere to ensure design quality
and understandability. Furthermore, if design
decisions are delegated to teams it should be
ensured that they follow the same design prin-
ciples as the architects.

Architectural decisions are documented in a
wiki, where also rationale is included. Arte-
facts in the common repository are linked to
the wiki. Each architect is committed to the
common principles.

How are assump-
tions handled?

Lack of communication often leads to incorrect
assumptions on what other teams are develop-
ing and how.

Each architect is aware of the big picture
and is responsible for giving enough infor-
mation on-site.

Table VII: Checklist for modularity concerns

Question Rationale Example answer in a company using
Scrum

What kinds of mech-
anisms are used for
enhancing low cou-
pling?

Low coupling is essential for separation of
tasks.

We follow design principles that reach for
as independent components as possible, if
there are many dependencies, components
are split to smaller entities if possible.

How is it verified
that all dependencies
are known?

While usage dependencies between compo-
nents may be rather easy to find, other depen-
dencies exist that may be more difficult to find.

Dependencies will become apparent at devel-
opment stage the latest, and the informa-
tion will be forwarded to the representative
architect on site.

How are interdepen-
dencies between deci-
sions considered?

Choosing libraries, COTS components, etc.
may affect further design choices.

Dependencies between decisions are identi-
fied and noted in the Wiki documentation.

32


