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1. Introduction  
There are few areas of modern life in which software is not an important (though often 
invisible) component. The software in our lives is increasingly complex; its interaction with 
the real world means that its requirements are in a state of constant change (Lehman & 
Fernández-Ramil, 2006). Many non-software products and services, from healthcare to 
transport, education to business, depend on reliable, high-quality software.  
Software engineering is the activity that applies engineering principles to software. It applies 
systematic, rigorous discipline to the design and development of software, much as civil 
engineering does to construction. Software engineering improves the quality, reliability and 
predictability of software systems, by generating knowledge, tools and processes that both 
facilitate and improve the software development process. These qualities are essential 
wherever software failure might lead to significant safety, security, or economic losses.  
Software systems frequently need to be modified in response to changes in system 
requirements and in their operational environment (Swanson, 1976). Such modification may 
involve the addition of new functionality, the adjustment of existing functions, or the 
wholesale replacement of entire systems. All such change is fraught with uncertainty – 
software projects involving change frequently fail to meet requirements, run over time and 
budget, or are abandoned (Rajlich and Bennett, 2000). As the ubiquity and complexity of 
software increase, a requirement has emerged for critical software which can successfully 
evolve without loss of quality—software that is engineered from the start to be easily 
changed, extended and reconfigured, while retaining its security, its performance, its 
reliability and predictability.  

2. Evolving Critical Systems 
The need is becoming evident for a software engineering research community that focuses on 
the development and maintenance of Evolving Critical Systems (ECS). This community must 
concentrate its efforts on the techniques, methodologies and tools needed to design, 
implement, and maintain critical software systems that evolve successfully (without risk of 
failure or loss of quality).  
In order to understand the challenges of ECS it is important to consider the complementary 
domains of Evolving Systems and Critical Systems. 
Evolving systems (Lehman (1980) called these E-type systems) may  

▪ have evolved from legacy code and legacy systems; 

▪ result from a combination of existing component-based systems, possibly over significant 
periods of time; 

▪ be the result of the extension of an existing system to include new functional 
requirements; 

▪ evolve as the result of a need to improve their quality of service, such as performance, 
reliability, usability, or other quality requirements; 

▪ evolve as a result of an intentional change to exploit new technologies and techniques, 
e.g., service-oriented architectures, or a move towards multi-core-based implementations;  

▪ adapt and evolve at run-time in order to react to changes in the environment or to meet 
new requirements or constraints. 
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Most large and complex software systems are evolving systems. The alternative to system 
evolution is total replacement, often not feasible for cost and other reasons. 

Table 1: Cost of one hour of downtime from 20001. Costs are likely to be significantly higher today. 

Companies $/hour 

Brokerage Operations $6,450,000 

Credit Card Authorisation $2,600,000 

eBay $225,000 

Amazon $180,000 

Package Shipping Services $150,000 

Home Shopping Channel $113,000 

Catalog Sales Center $90,000 

 
Critical systems are systems where failure or malfunction will lead to significant negative 
consequences (Lyu, 1996). These systems may have strict requirements for security and 
safety, to protect the user or others (Leveson 1986). Alternatively, these systems may be 
critical to the organization’s mission, product base, profitability or competitive advantage. 
For example, an online retailer may be able to tolerate the unavailability of their warehousing 
system for several hours in a day, since most customers will still receive their orders when 
promised. However, unavailability of the website and ordering system for several hours may 
result in the permanent loss of business to a competitor (Amazon's estimated downtime costs 
were $180,000 per hour in 2000, cf. Table 1). A brief categorisation of types of critical 
systems is shown in Table 2. 
Table 2: Types of Critical Systems: Many systems have overlapping aspects of criticality, e.g., a system might be both 

safety-critical and business-critical. 

Type of Critical Implication for Failure 

Safety-Critical May lead to loss of life, serious personal injury, or damage to the natural 
environment. 

Mission-Critical May lead to an inability to complete the overall system or project 
objectives; e.g., loss of critical infrastructure or data. 

Business-Critical May lead to significant tangible or intangible economic costs; e.g., loss of 
business or damage to reputation.  

Security-Critical May lead to loss of sensitive data through theft or accidental loss. 

 

                                                
1 From InternetWeek 4/3/2000 and Fibre Channel: A Comprehensive Introduction, R. 
Kembel 2000, p.8. based on a 1996 survey done by Contingency Planning Research, 
available online: http://www.contingencyplanningresearch.com/cod.htm 
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2.1. Software Engineering and ECS 
ECS can be viewed as a special case of the broader software engineering discipline. Similar 
issues and questions must be addressed within ECS as in other (non-ECS) software 
engineering research, but with the added (and conflicting) requirements of 
predictability/quality and the ability to change. 

The IEEE Computer Society’s “Software Engineering Body of Knowledge” (SWEBOK) 
characterises the elements and boundaries of the software engineering discipline (Abran et 
al., 2004). It defines ten Knowledge Areas (KAs) that are recognised as being core to the 
discipline. ECS can be considered from a similar perspective: 

1. Software Requirements. When changing a critical system careful consideration must 
be given to the requirements process – the elicitation, analysis, specification, and 
validation of requirements. A critical system cannot evolve successfully unless the 
requirements are correctly elicited and applied. 

2. Software Design. The design of a critical system will have an important bearing on 
the cost required for it to evolve successfully. The design includes the software 
structure and architecture, design quality attributes and evaluation, design notations, 
and design strategies and methods.  

3. Software Construction. Software construction for ECS must emphasise the use of 
appropriate construction processes, the application of coding standards and effective 
management.  

4. Software Testing. Testing for ECS offers an opportunity to validate the requirements 
and design and to assess the performance of the system in an evolving environment. 
Generation of test suites for evolving critical systems is a particular challenge. 

5. Software Configuration Management (SCM). SCM is essential for ECS if the change 
process is to be managed effectively. This includes planning, identifying the changes 
required, accounting for changes made, auditing, and release management.  

6. Software Engineering Management (SEM). In order to change an ECS in a systematic, 
disciplined, and quantified manner the best principles in management activities must 
be applied. The SEM KA includes scope definition, project planning, project 
enactment, review and evaluation. 

7. Software Engineering Process. A clear development process will be needed to define 
the regimen of activities that must occur as a critical system is modified, including 
process implementation and change, process definition, and assessment.  

8. Software Engineering Tools and Methods. This KA includes the tools and methods 
that can assist in software life cycle processes. As such, this KA cuts across the other 
KAs.  

9. Software Quality: In order to verify that an ECS has been changed successfully it will 
be necessary to review its quality. This should include quality assurance, verification 
and validation, and reviews and audits.  

While ECS is related to each of these Knowledge Areas, a tenth Knowledge Area, Software 
Maintenance, is most obviously relevant. Software Maintenance concerns the changing of a 
software system – the processes and activities concerned with changing software, as well as 
specific techniques undertaken during maintenance, including program comprehension, re-
engineering, and reverse engineering. A more complete mapping of SWEBOK’s KAs to ECS 
is outlined later in Section 4 of this document. 
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2.2. Related work in Software Evolution 
The problem of how to modify software easily without losing quality was widely understood 
and discussed at the NATO Software Engineering Conference in 1968 (Naur & Randell, 
1968). Lehman et al.’s early work on the continuing change process of the IBM OS360-370 
operating systems and the work that followed from that led to a large body of research into 
software evolution and the formulation of eight “Laws of Evolution” (Lehman & Belady 
1985, Lehman & Fernández-Ramil 2006). Swanson (1976) identified three types of 
evolution: 

1. corrective maintenance, used to overcome processing failure, performance failure, 
and implementation failure;  

2. adaptive maintenance, which would overcome change in data environment (e.g., 
restructuring of a database) and change in processing environment (new hardware, 
etc); and  

3. perfective maintenance, which would improve design, which might overcome 
processing inefficiency, enhance the performance, and the system's maintainability.  

Rajlich & Bennett’s (2000) staged-life cycle model highlighted the maturity of a software 
system as being an essential consideration when planning change. More mature software, 
where many (or all) of the key developers are no longer in place is seen as being harder to 
evolve than newer software supported by its original developers.  

As software evolves in terms of functionality, it often degrades in terms of reliability. While 
it is normal to experience failures after deployment and the goal of much of software 
maintenance is to remove these failures, experience has shown that evolution for new 
functionality and evolution for maintenance can both result in “spikes” of failure (cf. Figure 
1). Over time, a traditional system degrades as it evolves and more, rather than fewer, failures 
are experienced (Lehman, 1996, Parnas, 1994, Rajlich & Bennett, 2000).  

 
Figure 1: As complex software evolves new defects are introduced, causing the failure rate to spike and increase over 

time, from Pressman (1997). 
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Dynamic evolution (sometimes called run-time or automatic evolution) is a special case 
whereby certain critical systems may need to change during run-time, e.g., by hot-swapping 
existing components or by integrating newly developed components without first stopping 
the system (Buckley et al. 2005). This has to be either planned ahead explicitly in the system 
or else the underlying platform has to provide a means to effectuate software changes 
dynamically. In terms of the software evolving itself automatically, there are a number of 
challenges beyond those faced when a human drives the process. Ubiquitous computing 
systems or autonomic systems are often typified as consisting of large numbers of distributed 
autonomic, often resource-constrained embedded, systems. These types of systems could be 
hoped to evolve dynamically but as Baresi et al. (2006) point out, in these domains open-
world assumptions about how a piece of software might be used are dominant. Designers 
cannot fully predict how a system behaves and how it will interconnect with a continuously 
changing environment. Therefore open assumptions must be built in and software must adapt 
and react to change dynamically, even if such change is unanticipated. 

3. Evolving Critical Systems – PEA+T  
Research topics for ECS may usefully be categorized according to the stage of the evolution 
process to which they are relevant (before, during or after modification). These three stages 
are referred to here as Plan, Evolve and Assess – shown in Figure 2. A fourth heading, 
Tooling, cuts across the stages of the PEA cycle and concerns the tool support available and 
required for ECS (in much the same way as the Software Engineering Tools and Methods 
knowledge area cuts across the other SWEBOK knowledge areas): 

• Plan: All activities/considerations that can occur before the system is next changed, 
including detecting and weighing the need for evolution and modelling its implications. 

• Evolve: All activities/considerations that can occur during the modification of the system  
• Assess: All activities/considerations that can occur after the most recent change has been 

made to the system. 
• Tooling: Consideration of tools to assist in the evolution cycle. Many of these support the 

whole cycle, e.g., visualisation and version control, others support aspects, e.g., 
refactoring support. 

 
Figure 2: The PEA Cycle for Evolving Critical Systems 
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The Plan-Evolve-Assess (PEA) model can refer to a whole evolution process or just a single 
change made as part of a larger development process. After a cycle of change has completed, 
it may be desirable to undertake another cycle, in which case the outputs of the Assess stage 
will be used as inputs to the Plan stage of the next cycle. Continuously evolving autonomic 
or adaptive systems may be expected to cycle continuously as a control loop (Dobson et al., 
2006) and so the separation between the Assess and Plan stages may become blurred.  

3.1. A Research Taxonomy for Evolving Critical Systems 
We suggest here a breakdown or taxonomy of the software engineering research topics that 
are most relevant to the ECS domain, arranged in line with the stages of the PEA cycle. The 
relevant topics are listed with a brief introduction, followed by a sub-topic breakdown.  
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3.2. Plan 
Before undertaking any modification of a critical system it is necessary to consider a number 
of factors if evolution is to be successful, without being prohibitively expensive. The 
requirements for change must be carefully captured and applied (requirements 
engineering). It will be necessary to consider the software development process used to 
undertake the change and the system’s architecture design before modification is 
undertaken and the intended architecture after modification. Proscriptive methods may be 
used to control the scope of change and risk management should be used to assess the 
causes, likelihood of success and cost of modifications. The classification of the relevant 
software engineering research topics for the Plan stage is shown in Figure 3. The topics are 
elaborated on below. 
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Figure 3: Software Engineering Research Topics under Plan 

3.2.1 Requirements Engineering 
Van Lamsweerde (2009) identified a number of causes for changes to software systems that 
are relevant for ECS, including errors and flaws in the requirements document, better 
customer understanding, new functional features, or improved quality features. A number of 
environmental changes were also identified, including new classes of users or new usage 
conditions, new ways of doing things, alternative ways of doing things, new regulations, 
alternative regulation, organizational changes, new/alternative technology, and new 
opportunities. 
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In order to successfully evolve a critical system, it is imperative that we understand to what 
the system should be evolving. We must validate that we are capturing the new system 
requirements and specifying them correctly (requirements elicitation). When requirements 
specify new or changed features we must ensure that they do not interact adversely with one 
another or with the existing feature set (feature interaction and selection). Requirements 
monitoring can be used to test the extent to which a running system is meeting its 
requirements (Fickas & Feather, 1995). When developing critical systems we must also be 
mindful of the fact that it must evolve and this requirement itself should be captured and 
internalised (evolvability requirements). 
1) Requirements Engineering 

A) Evolvability Requirements (cf. Assess 3.A) 

B) Requirements Elicitation  

C) Requirements Monitoring 

D) Features 

i) Feature Interaction 

ii) Feature Selection 

E) Validation (cf. Assess 1.A) 

3.2.2 Software Development Processes 
If the evolution of software artefacts is to be disciplined, the development processes must be 
planned, driven and controlled (Lehman & Fernández-Ramil, 2006). Waterfall (Royce, 
1970), Spiral (Boehm, 1988), and Agile (Beck et al., 2001) models of software development 
and evolution have been applied successfully to software evolution. These models lie on a 
spectrum of regimentation; Planned waterfall-like approaches are very regimented, while 
feedback-driven Agile methods are more flexible, with Spiral models lying between the two.  
An organisation’s choice of software process will depend on a number of factors, including 
the criticality, risk, and regulatory environment of the system. Less regimented processes are 
becoming more popular due to their speed and efficiency but are often perceived to be less 
suited to the development and evolution of larger, more critical systems, or to systems whose 
development must adhere to regulatory guidelines. The development process may itself 
evolve; a number of steps have been made to formalise process improvement in terms of 
reliability, repeatability, and reducing cost as well as in the assessment of particular software 
development processes.  
2) Software Development Processes 

A) Waterfall Models 

B) Spiral Models 

C) Agile Methods 

D) Software Process Improvement (cf. Assess 4) 

i) CMMI (cf. Assess 4.A) 

ii) Process Assessment  
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3.2.3 Architecture Design 
The use of well-designed architectures will have an important bearing on the ease with which 
a critical system can be successfully evolved. The system is afforded a measure of future 
proofing by encapsulating aspects of the system that are both critical and likely to change 
(encapsulation of criticality). Model-driven architectures allow the specification of a 
system to be defined as a model that is distinct from the implementation; the intent is that the 
model is defined in such a way that it is easy to change and such changes can be reflected in 
the implementation (ideally automatically) in preference to undertaking the more expensive 
process of changing the implementation itself (Hearnden et al., 2004). A critical system may 
use a service-oriented architecture to expose functionalities that can be changed or 
composed in different combinations to provide new services. Aspect-oriented development 
increases modularity and improves maintainability by separating cross cutting concerns and 
reducing code tangle. The application of software product line approaches can improve 
reuse and evolvability (Weiss & Lai, 1999).  

3) Architecture Design 

A) Encapsulation of Criticality (cf. Assess 3.B)  

i) Fault Isolation 

B) Model-Driven Architectures and Model-Driven Engineering 

i) Code Generation 

C) Service Oriented Architectures 

i) Evolving Middleware  

ii) Service/Feature Selection  

D) Aspect-Oriented Development 

E) Software Product Lines (SPLs) 

i) Dynamic Software Product Lines (DSPLs) 

ii) Software Process Lines 

iii) Services and SPLs 

3.2.4 Proscriptive Models 
Proscriptive models (Heimbigner, 1990) define what is required of the system at the end of an 
evolutionary cycle rather than the activities that must be performed during the cycle. By 
specifying requirements formally, (including system objectives, domain concepts, functional 
and non-functional requirements) before a change takes place, it becomes possible to validate 
the changed system formally against that specification, thus ensuring that the modifications 
were successfully applied (formal methods). Structural Design Methods describe the 
intended system based on a decomposition of the structure of that system, e.g., SSADM, 
Yourdon, and more recently UML. The structure is used to derive the design of the system 
and describe its functionality in a way that can later be used to drive the implementation. 

4) Proscriptive Models 

A) Specification 

i) System Objectives 
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ii) Domain Concepts 

iii) Functional Requirements 

iv) Non-functional Requirements 

B) Formal Methods 

i) Formal Specification 

ii) Validation (cf. Assess 1) 

(a) Formal Analysis (cf. Assess 1.B) 

iii) Refinement/Reification 

(a) Data Refinement 

(b) Operation Refinement 

C) Structural Design Methods 

3.2.5 Risk Management 
As software ages, modification will be increasingly likely to introduce unforeseen errors into 
a system (Parnas, 1994, Lehman, 1996). This poses significant risks when modifying critical 
software, as the software must retain its quality after changes are applied. When change is 
necessary due to flaws in a system, an analysis must be performed to diagnose the underlying 
cause and plan the treatment (Mens & Demeyer, 2001) (fault/error analysis); if a system is 
self-evolving it needs to be aware of its current context (context-awareness) in order to do 
so. The potential risk and cost of performing evolution should be estimated a priori, as 
should the evolution’s likelihood of success and cost (Ramil & Lehman, 2000) (predictive 
estimation). Underlying these concerns is the need to model the various inherent 
uncertainties of the system, its operational environment, and the agents of change (Baresi et 
al., 2006) (uncertainty analysis). Modification of a critical system must occur only when it 
is certain that such changes will not reduce the quality of the system. 
5) Risk Management 

A) Fault/Error Analysis 

i) Treatment Analysis 

(a) Diagnosis 

ii) Error Processing 

(a) Detection 

(b) Diagnosis 

B) Context Awareness  

C) Predictive Estimation 

i) Prediction of Cost/Effort 

ii) Process Metrics 

D) Uncertainty Analysis 



 

Lero-TR-2009-00-20090727.docx  14//xiv 
 

3.2.6 Summary of the Plan Phase 
We should not feel confident in changing a critical system until the planning stage is 
complete and we are certain of  
▪ what we are trying to achieve by modifying the system (requirements engineering);  

▪ how we will undertake the modification (software development processes);  

▪ what we are modifying (architecture design);  
▪ what the scope of the modification is (proscriptive models);  

▪ and have assessed the possibility and cost of success (risk management). 

3.3. Evolve 
Once we have planned our modifications and are confident of success we are able to 
undertake the actual modification of the software. We must fully understand the critical 
system and be able to affect changes safely in order to modify it successfully. Modification 
may require the reconstitution of the system in a new form (reengineering). As these 
changes are made we must be able to trace the impact of each change throughout the system 
(impact analysis). If faults are present in the system, either pre-existing or introduced by the 
modification, they must be treated and removed (fault treatment and error processing). 
The classification of the relevant software engineering research topics for the Evolve stage is 
shown in Figure 4.  

 

 

Figure 4: Software Engineering Research Topics under Evolve 
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3.3.1 Reengineering 
Reengineering involves the examination and alteration of an existing system to reconstitute it 
in a new form (Chikofsky & Cross, 1990). System comprehension may be a significant 
barrier to such evolution (Rajlich & Wilde, 2002), especially as many long-lived critical 
systems are not well documented and/or few (or none) of its original developers are available 
to explain its inner workings (Rajlich & Bennett, 2000). In this case it may be necessary to 
reverse engineer, to reconstruct the software’s design (design recovery), and/or to 
redocument the system to understand how to make the necessary changes. Once the system 
is understood it may be refactored (Fowler, 1999) into its modified form either manually or 
automatically (automatic code generation). 
1) Reengineering 

A) Reverse Engineering 

i) Concept Location (cf. Evolve 2.A) 

B) Refactoring 

i) Model Transformation (cf. Plan 3.B) 

ii) Configuration-Management (cf. Plan 3.C, Plan 3.E) 

iii) Automatic Code Generation (cf. Evolve 2.A.v) 

iv) Architectural Refactoring 

C) Redocumentation 

D) Design Recovery 

E) Automatic Code Generation 

3.3.2 Impact Analysis 
As software is modified, seemingly small changes can cause a ripple effect, leading to 
significant consequences for the modification process. To manage this it is important to be 
able to identify and trace the impact of each change (traceability analysis). Traceability has 
a significant cost, and can be an additional source of errors, but for ECS it is essential for a 
number of artefacts, including requirements, assumptions, architecture, risks, design modules, 
faults, documentation, correctness proofs, tests and source code (Lions (1996) attributed the 
Ariane 5 disaster to the non-traceability of assumptions and their dependencies). 
As evolution is taking place it may be important to monitor and estimate the effort required to 
complete the cycle completely (effort estimation). In systems that evolve in runtime there 
may be constraints on the amount of time that is allowed for evolution to take place; if 
analysis reveals that the process is likely to take too long or is likely to fail, the process may 
be halted or other mitigating steps taken. Amortisation may be used to balance the cost of 
change against its long-term benefit. This would involve estimating in advance the effects, 
costs, effort, and time required to undertake an evolution action, as well as its anticipated 
benefits. 
As new features are added to a system, or as existing features are changed, it is possible that 
they may interact in a detrimental manner (feature interaction). While these features in 
isolation may be correctly designed and implemented, unexpected interactions between the 
features may occur when these features are integrated into a larger system. It is essential that 
these potential interactions be detected as early as possible in the development process. 
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2) Impact Analysis 

A) Traceability Analysis  

i) Requirements (cf. Plan 1) 

ii) Assumptions (cf. Plan 4.A) 

iii) Compliance (cf. Plan 4.A) 

iv) Risk, Criticality (cf. Plan 5) 

v) Source Code Analysis 

(a) Program Slicing 

(b) Refactoring (cf. Evolve 1.B) 

vi) Software Architecture (cf. Plan 3) 

vii) Design Models (cf. Plan 3.B) 

viii) Faults (cf. Plan 5.A)  

(a) Fault Tolerance (cf. Assess 2.B.ii)  

ix) Test Coverage 

x) Developer or End-user Documentation 

xi) Correctness Proofs (cf. Plan 4.B) 

B) Effort Estimation (cf. Plan 5.C) 

i) Timeliness Monitoring 

ii) Amortisation  

C) Feature Interaction Analysis (cf. Plan 1.D) 

i) Configuration-Management 

ii) Software Product Lines (cf. Plan 3.E) 

3.3.3 Fault Treatment and Error Processing 
If a fault is observed in a critical system its treatment and removal will take high priority. If 
the fault is critical to the functionality of a live system, it may be necessary to temporarily 
disable the affected function (passivation) or to reconfigure the system before correcting 
the fault. When autonomous critical systems encounter errors during operation, they must be 
capable of identifying, detecting, and recovering from the error, potentially without human 
assistance (error processing).   
3) Fault Treatment (cf. Plan 5.A) 

A) Passivation 

B) Reconfiguration 

C) Correction 

D) Error Processing (cf. Plan 5.A) 

i) Recovery 
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3.3.4 Summary of the Evolve Phase 
The Evolve phase covers the mechanics of actually changing a critical system – from system 
comprehension, reverse engineering, and refactoring/reengineering to tracing the impact of 
each change made and overcoming and correcting faults. 

3.4. Assess 
After a critical system has been modified and before it is activated it must be assessed to 
ensure that quality has not been lost. The modified system must be validated against its 
requirements to ensure that the changes achieved the desired effects (incremental 
verification and validation). The system can be assessed using a number of software 
quality attributes to measure its characteristics, including safety, dependability, and 
security. Its architecture can be assessed to ensure that it reflects good principles of software 
design – this will be important if the system is to continue to be evolvable in the future 
(architecture quality metrics). Finally, at the end of a cycle of evolution we can attempt to 
refine the evolution process itself by reflecting on the success and cost of the cycle (software 
process improvement). The classification of the relevant software engineering research 
topics for the Assess stage is shown in Figure 5.  
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Figure 5: Software Engineering Research Topics under Assess 

3.4.1 Incremental Verification and Validation 
If evolution of a critical system is to be successful the newly evolved system must be verified 
and validated against its requirements. This can be done using formal verification – but one 
of the key difficulties of formal verification is that its cost tends to match the size of the 
system rather than the size of the change. An important challenge for ECS is to ensure that 
the scope of the verification correlates to the magnitude of the change – that it is truly 
incremental (Mens et al., 2005).  
Software tests with high levels of code coverage has been shown to improve reliability (Lyu, 
2007) and regression testing can be used to prevent old bugs from reappearing after changes 
have been made (testing).  
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Even if the evolved system is found to meet its requirements, is formally verified, and passes 
its test suite – it is possible that uncertainty in the operational environment will cause it to fail 
if this uncertainty is not incorporated into the verification process. This highlights a 
requirement for formalisms and metrics to express uncertainty.  

1) Incremental Verification and Validation 

A) Requirements (cf. Plan 1) 

i) Consistency 

ii) Completeness 

B) Formal Verification (cf. Plan 4.B) 

i) Proof  

ii) Static Analysis 

iii) Dynamic Analysis 

C) Testing 

i) Regression Testing 

ii) Fault Analysis 

iii) Test Coverage 

iv) Automatic Test Case Generation 

D) Formalisms and Metrics for Uncertainty 

3.4.2 Software Quality Attribute Measurement 
After evolving a critical system its quality attributes should be measured in terms of 
performance, dependability, security, and safety (Barbacci et al., 1995, Leveson, 1986). If 
a system can operate in a number of different behaviour modalities with different levels of 
criticality these metrics must be measured and assessed individually for each mode (mode 
performance analysis). Metrics that account for uncertainty will be necessary in dynamic 
operating environments, as will estimation of the extent to which the system will be robust to 
unanticipated conditions or faults (Schneidewind, 1996, Schneidewind & Hinchey, 2008) 
(assessing quality in the presence of uncertainty). Given that there will often be trade-offs 
between desirable quality attributes in a critical system it may be necessary to develop meta-
measures that combine these measures to make the most appropriate trade-offs (quality 
attribute aggregation).  

2) Software Quality Attribute Measurement (cf. Plan 4.A) 

A) Performance 

i) Latency 

ii) Throughput 

iii) Capacity 

B) Dependability 

i) Reliability 

ii) Fault Tolerance (cf. Plan 5.A) 
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iii) Availability 

C) Security (cf. Plan 5.A) 

i) Confidentiality 

ii) Integrity 

iii) Availability 

D) Safety (cf. Plan 5.A) 

i) Hazard Identification 

ii) Hazard Analysis 

E) Mode Performance Analysis 

F) Assessing Quality in the presence of uncertainty (cf. Plan 1.C) 

G) Quality Attribute Aggregation 

3.4.3 Architecture Quality Metrics 
In order for a critical system to remain evolvable or maintainable (i.e., to remain in Rajlich & 
Bennett’s (2000) evolution stage of the software life cycle) it is essential to assess whether 
the system’s architecture complies with good design principles. Architecture elements that 
are badly structured, contain errors, or are incomplete can be considered evolution-critical 
and should be refactored (Mens & Demeyer, 2001) (maintainability). Core features of a 
critical system’s architecture should be modularised and emphasis placed on their correct 
design (encapsulation of criticality). After any refactoring-focused evolution (or 
maintenance) cycle it will be necessary to ensure that the new architecture has improved 
quality, without impacting on functionality or on any other software quality metrics. In order 
to confirm this, a useful technique may be to identify and ensure the correct application and 
composition of design patterns (Tsantalis & Halkidis, 2006, Fowler, 1999) (composition of 
architecture patterns), to assess the application of best principles in information hiding 
(Parnas, 1972) (separation of modules), and to ensure the improvement of Object Oriented 
Design metrics (Chidamber & Kemerer, 1994), where appropriate (high cohesion, low 
coupling).  

3) Architecture Quality Metrics (cf. Plan 3) 

A) Maintainability (cf. Plan 1.A) 

B) Encapsulation of Criticality (cf. Plan 3.A) 

C) Composition of Architecture Patterns 

D) Separation of Modules 

i) Failure Resilience (cf. Plan 3.A.i) 

E) High Cohesion 

F) Low Coupling 

3.4.4 Software Process Improvement 
Existing process improvements like the SEI’s Capability Maturity Model (CMM) and 
Capability Maturity Model Integration (CMMI) have been shown to reduce defect density 



 

Lero-TR-2009-00-20090727.docx  21//xxi 
 

(Diaz & Sligo, 1997). Every time a cycle of change has completed there is an opportunity for 
analysing and improving the process or metrics used (improved software quality 
attributes). Autonomic systems could incorporate learning algorithms into the cycle to 
improvement their processes (learning to evolve).  

4) Software Process Improvement (cf. Plan 2.D) 

A) CMMI (cf. Plan 2.D.i) 

B) Improved Software Quality Attributes (cf. Assess 2) 

C) Learning to Evolve (cf. Plan, Evolve, Assess) 

i) Correctness (cf. Assess 1) 

ii) Timeliness (cf. Evolve 2.B.i) 

3.4.5 Summary of the Assess Phase 
The research topics under Assess cover the process of confirming that the modifications were 
applied successfully (verification and validation) and the metrics that may be applied to 
confirm that system and architecture quality were retained (or improved) after modification 
(software quality attributes, architecture quality metrics). At the end of each cycle there 
is an opportunity to reflect upon and improve the process of change itself (software process 
improvement). 
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4. Discussion 
The taxonomy outlined in the earlier section represents all the main software engineering 
research areas for ECS. In Section 2.1 we outlined briefly the relationship between ECS and 
the software engineering research topics listed in the SWEBOK. Figure 6 shows a mapping 
between the SWEBOK knowledge areas and the Plan-Evolve-Assess stages of ECS. In order 
to explore the research agenda for ECS further we outline a number of key research questions 
for ECS.  

 

 
Figure 6: Mapping of ECS to the SWEBOK Knowledge Areas 

4.1. Research Questions for ECS 
The following are a number of interesting research questions for ECS broken into the Plan-
Evolve-Assess stages. Fundamental questions underlying ECS research are:  
• How do we design, implement, and maintain critical software systems that 

a) are highly reliable 
b) retain this reliability as they evolve without incurring prohibitive costs. 

• How can we maintain critical software quality when its teams, processes, methods and 
toolkits are in a state of constant change? 

4.2. ‘Plan’ Questions 
Under the Plan phase the following are important research questions: 

• How do we specify what we want an evolution cycle to produce and how will we know 
that it has been successful? 
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• What new advances in requirements engineering are appropriate for ECS? How can 
requirements be captured and elucidated in a manner that allows for subsequent 
successful change in both the system and the requirements?  

• What are the software design methodologies that best facilitate the support and 
maintenance of ECS?  

• What changes to current processes are needed to make agile an appropriate environment 
in which to develop critical systems? 

• What is the best architectural model/technique for ECS? What characteristics are best for 
successful ECS software architectures? 

• How do we effectively model a changing environment? 
• How best can we estimate the effort involved in specific evolution exercises?  

4.3. ‘Evolve’ Questions 
Under the Evolve phase the following research questions may be considered: 
• To what extent can we automatically derive evolved critical systems from models? 
• In an evolving system how do we keep the various software artifacts (e.g., documentation 

and source code) in sync? Which artifacts are most important for traceability in an ECS 
• How might automated design improvement techniques be used to prepare a critical 

system for evolution? 
• How can we evolve systems where there is considerable uncertainty in the operational 

environment, where the environment changes in a deterministic, non-deterministic, or 
stochastic manner? 

4.4. ‘Assess’ Questions 
The following research questions apply to the Assess phase: 

• How do we ensure continual compliance with regulatory requirements in an ECS? 
• How can we ensure that software never evolves into a state where it exhibits unstable 

behaviour? 
• Can we provide useable (quality/reliability) analysis tools and methods to evolve critical 

systems? 
• What metrics are suitable to assess the success of evolution? 
• How can we enforce run time policies in the presence of a changing environment? 
• Can we incorporate learning into large-scale ECS? 

5. Conclusions 
We have outlined the ECS research domain, which is concerned with the creation of 
knowledge, processes, protocols, and tools for the efficient development of critical systems 
that evolve. In developing and maintaining evolving critical systems there are tensions 
between reliability, predictability, and cost of evolution on the one hand, and the need for the 
system to evolve on the other. Given these tensions we must ask which processes, techniques 
and tools are the most cost-effective for evolving critical systems. In fact, there may exist 
some systems that should not evolve at all because the cost and risk of performing evolution 
successfully exceeds the value of the system by orders of magnitude. We believe that the 
community should develop objective criteria to decide whether a given system is in this class, 
and specific techniques to design such systems where version 1.0 is the final one. 
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The body of this paper suggests the Plan-Evolve-Assess cycle for critical systems evolution 
and outlines a taxonomy of research topics for ECS. The taxonomy delineates the boundaries 
of the ECS field and shows how it relates to widely recognised research topics within the 
broader software engineering discipline. While we have outlined many issues that may be 
considered to successfully evolve critical software, it would be costly to apply all of them for 
any single system. The topics outlined here may be viewed as options for an organisation 
seeking to evolve critical software rather than a prescriptive regimen.  
The paper was concluded with a set of research questions that ECS research should seek to 
answer. This list is by no means exhaustive and we anticipate that further questions will arise 
as the field is explored further. 
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1. Appendix: ECS Scenarios 
ECS is important for all application domains, but most of all where large and important 
software systems persist over a period of years, and must be upgraded or enhanced without 
being rewritten from scratch; or must continue to operate as specified in changing 
environmental conditions. Examples of important application domains include medical 
devices, financial services, and telecommunications. Such domains require reliable, flexible 
software of the highest standard, capable of being changed without having to go back to the 
drawing board for each new version or iteration. After having outlined the ECS research field 
we now explore the application of ECS by outlining scenarios from five different domains.  

1.1. Parallel and Multicore Computing 
Many developers are faced with the opportunity of increased processing power brought about 
by the advent of multicore computing. However, in many cases, software based on serial 
execution is ported as-is to the multicore environment. It may indeed run more quickly than 
on a single processor, but it fails to exploit more than a fraction of the potential power 
(Sutter, 2005). Writing directly for multicore or porting serial execution software to multicore 
is difficult; one of the reasons for this is because the parallel environment is susceptible to 
subtle variations in processor speed, load balancing, memory latency, the sequence and 
timing of external interrupts and communications topology (Pancake, 1992). Ideally software 
should be evolved (automatically if possible) to best utilise all available resources.  

Some key questions in this application domain are  
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▪ Could critical software be designed to evolve itself in reaction to the dynamic availability 
of computing resources?  

▪ How might a critical system be refactored according to different levels of parallelisation?  

▪ How might security and reliability be guaranteed in the presence of automatically 
generated code?  

▪ How can we evolve existing software to exploit multicore and parallel architectures fully?  

▪ What verification and validation approaches are necessary for critical systems in parallel 
computing? 

1.2. Critical Network Protection 
Networks can describe many important technological infrastructures, including the Internet, 
national or international power grids, peer-to-peer systems, wireless sensor and delay-tolerant 
networks. There is evidence that the security of our online infrastructures has been breached a 
number of times (McAfee, 2008). Network dynamics can allow a local failure/threat to 
quickly develop into a global failure (e.g., large scale black-outs or e-mail virus outbreaks) 
(Cohen et al., 2001, Wang et al., 2009).  

Key questions in this domain include the following 
▪ Can we maintain the integrity of networked data and ensure the responsiveness and 

availability of network infrastructure in the presence of malicious onslaughts from 
unknown (possibly automated) sources? 

▪ How can essential upgrades be made to these infrastructures (e.g. to fix security 
loopholes, to make upgrades) without taking systems out of operation for any period of 
time?  

▪ How might a critical network predict and evolve itself to prevent the onset of a possible 
global network failure?  

1.3. Autonomous Environmental Monitoring 
Performing environmental monitoring using swarms of autonomous mobile agents is 
attractive when it is too dangerous or expensive to send humans to do the task (Oreizy, 1999, 
Truszkowski et al., 2004). The swarm can be left in place over long periods of time, during 
which its mission may be expected to change. It will not always be appropriate or possible for 
a human to be involved in the evolution cycle – the system's environment can change quickly 
leading to new requirements for the software. The classic example of spacecraft operating far 
from earth is most obvious, but more mundane examples abound, where the software may be 
too complex or the change too urgent to wait for a team of humans to undertake the required 
evolution. In this case, software that is capable of identifying required changes and (at least 
partially) evolving itself would become more valuable. This combination of evolutionary 
stimuli raises difficult problems for ECS.  
▪ How might a software system evolve its mission goals in response to changing 

environmental conditions (e.g., detection of a new toxin in a watercourse (Dobson et al., 
2009))?  

▪ How can new mission requirements be incorporated into the current goals of individual 
agents when the complete picture of the environment is distributed across the swarm?  

▪ How might agent redundancy and significant communication interruptions affect the risk, 
timeliness, and correctness of evolution?  
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1.3.1 Automotive Software 
Automotive manufacturers and software vendors face a number of problems when 
developing and evolving critical systems, including 
• high demand for customization, driven by market competition and end-user preferences;  

• subsystems, supplied by multiple vendors that are developed using different processes 
and different engineering technologies; 

• software applications running on these individual subsystems that are inherently 
incompatible, due to the diversity of vendors’ development cultures, and 

• unreliability of these software applications, in turn resulting in high costs incurred by 
manufacturers for vehicle recalls and maintenance. 

The current state of practice in developing embedded-infrastructure software uses 
component-based architectures such as those promoted by the AUTOSAR initiative, along 
with static code analysis tools to capture design flaws. However, these still fail to address the 
dynamic and real-time aspects of the infrastructure software (Shokry & Hinchey, 2009). 

Automotive software raises some interesting questions about the management of software 
evolution: 

▪ How can upgrades to automotive software be enabled without the need to return to a 
dealership?  

▪ Can we undertake these tasks without making any safety/reliability sacrifices? 

1.4. Healthcare Management 
We envisage a situation where many different providers keep health records electronically 
across multiple jurisdictions using different formats and different access protocols. We would 
like this information to be available, for example, to paramedics in Germany treating 
someone from USA in an accident situation.  
Such a scenario raises questions such as  
▪ How can we be sure that the information is available, up-to-date and accurate and that 

information regarding conditions and medication is available immediately to medical 
professionals, yet kept confidential during transmission?  

▪ If changes in legislation or policy in (at least) one jurisdiction force evolution of key 
components within the system, can we ensure that these requirements will still be 
satisfied, along with the new ones? 
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