THE IRISH SOFTWARE
l e ro ENGINEERING
RESEARCH CENTRE

Experience Report on Industrial Product
Derivation Practices within a Software
Product Line Organisation

Padraig 0'Leary
RiSE - Reuse in Software Engineering and Computer Science Department,
Federal University of Bahia, Salvador, BA, Brazil

Steffen Thiel

Furtwangen University of Applied Sciences, Germany

|ta Richardson
Lero - The Irish Software Engineering Research Centre
University of Limerick, Ireland

4" Navember 2010

Contact

Address ... Lero
International Science Centre
University of Limerick

Ireland
Phone ... +3a3 Bl 233799
) +3a3 61 213036
E-Mail ... infollero.ie
Website http://www.lero.ie/

Copyright 2010 Lero, University of Limerick

This work is partially supported by Science Foundation Ireland

under grant no. 03/CE2/1303-1

Lero Technical Report Lero-TR-2010-03

Experience Report on Industrial Product
Derivation Practices within a Software Product Line

Organisation

Padraig O’Leary, Steffen Thiel, Ita Richardson

Abstract

Inefficient product derivation practices can greatly diminish the productivity gains
expected from a software product line approach. As a foundation for systematic
and efficient product derivation a better understanding of the underlying activities
in industrial product line development is required.

This technical report presents the main findings from a case study. It
provides empirical evidence on the organisational structure, roles and
responsibilities, and the derivation process of an industrial software product line
company. The report adds to the body of empirical evidence on product derivation

practices.

1 Introduction

A Software Product Line (SPL) is a set of software-intensive systems that share a
common, managed set of features satisfying the specific needs of a particular
market segment or mission and that are developed from a common set of core
assets in a prescribed way [1]. The SPL approach makes a distinction between
domain engineering, where a common platform for an a number of products is
designed and implemented, and application engineering, where a product is
derived based on the platform components [2]. The separation into domain
engineering and application engineering allows the development of software
artefacts which are shared among the products within that domain. These shared
artefacts become separate entities in their own right, subscribing to providing

shared functionality across multiple products.

[t is during application engineering that the individual products within a
product line are constructed. The products are built using a number of shared
software artefacts created during domain engineering. The process of creating
these individual products using the platform artefacts is known as product
derivation.

Product derivation is the process of constructing a product from a
Software Product Line’s (SPL) core assets [3]. An effective product derivation
process can help to ensure that the benefits delivered through using these
shared artefacts across the products within a product line is greater than the
effort required to develop the shared assets. In fact, the underlying assumption
in SPL that “the investments required for building the reusable assets during
domain engineering are outweighed by the benefits of rapid derivation of
individual products” [4] might not hold if inefficient derivation practices
diminishes the expected gains.

In the context of inefficient product derivation, a number of publications
speak of the difficulties associated with the process. Hotz et al. [2] describe it as
“slow and error prone, even if no new development is involved”. Griss [5]
identifies the inherent complexity and the coordination required in the
derivation process by stating that “...as a product is defined by selecting a group
of features, a carefully coordinated and complicated mixture of parts of different
components are involved”. Therefore, the derivation of individual products from
shared software assets is still a time-consuming and expensive activity in many
organisations [3].

Despite this, there has been little work dedicated to the overall product
derivation process. Rabiser et al. [6] claim that “guidance and support are
needed to increase efficiency and to deal with the complexity of product
derivation”. As Deelstra et al. [3] states there “is a lack of methodological support
for application engineering and, consequently, organisations fail to exploit the
full benefits of software product families.”

Investigation into industrial product derivation practice is considered an
interpretive study. Walsham [7] stated that “case studies provide the main
vehicle for research in the interpretive tradition”. The case study approach has

always been one of the most popular research strategies [8]. It is a powerful and

flexible technique, considered suitable for exploratory research both
prospectively and retrospectively [9]. A case study is especially helpful in
situations where researchers are seeking to develop understandings of the
dynamics of a phenomenon in its natural context [10]. It is often considered to be
the optimal approach for researching practice based problems, where the aim is
to represent the case authentically “in its own terms” [11].

In this report, we present a case study we conducted on industrial
product derivation practices. The case study was conducted in a large
automotive supplier and the observations from this study are detailed here. The
observations are focussed on the organisational overview of the SPL, roles and
responsibilities and the product derivation process within the company.

The report contributes to an improved understanding of industrial
product derivation practice. It can be considered a source of empirical evidence
for derivation practice and thus can enrich existing theory on product derivation
practice.

The paper is structured as follows: Section 2 details the case study
methodology. Section 3 gives an overview of the product line platform. Section 4
describes the organisational overview. Section 5 presents the main roles and
responsibilities. Section 6 discusses the product derivation process within the
company. Section 7 details the findings from the case study. Finally, section 8

presents the conclusion.

2 Case Study

For the case study, the researcher collected data on the product derivation
process of software-intensive automotive product lines in different business
units within the company. The company was chosen for the case study because
previous SPL efforts within the company have been judged a success by their
peers [12]. The case study was carried out in conjunction with the corporate

research division.

2.1 Data Source

The researcher met with the case study company where he gave a presentation

on the research project and the nature of the commitment required for any

participant company. In return for company participation, on completion of the
case study the researcher would organise a workshop where he would present a
set of recommendations for improvements within the company’s product
derivation process. The researcher would introduce some alternative derivation
practices as identified in the literature. On completion of the research project,
the researcher would make any findings available to the participating company.
The company agreed to participate and organised for the researcher to
work with the companies Corporate Research division. The Corporate Research
division was interested in analysing product line product derivation methods
applied in different Business Units within the organisation. The goal of the work
was to strengthen the ability of Corporate Research to support and advise
different Business Units in product derivation. The Business Units seeking
support and advice were within the software-intensive automotive product lines
division. Each Business Unit platform contained software and algorithm
components, hardware modules and housing concepts. Members of two Business
Units were made available to Corporate Research for the duration of the project.
Corporate Research nominated a person to liaise with the project for
planning and execution of the research and four staff member from various
business units were made available for the onsite visit. After discussion three
primary work tasks were identified for the case study. These tasks were:
1. Identification of product derivation practices within the company
2. Evaluation of product derivation practices within the company
3. Recommendations to improve product derivation practices
A timeline was established with expected delivery dates on interim

results and final delivery of recommendations agreed upon.

2.2 Data analysis procedure and methods

According to Yin [10], the use of multiple sources of evidence in a case study
allows an investigator to address a broader range of historical, attitudinal, and
behavioural issues. The use of multiple sources of empirical evidence provide an
opportunity for triangulation in order to make any finding or conclusion of the

study more convincing and accurate [10]. Yin identifies six sources of evidence:

documentation, archival records, interviews, direct-observation, participant-
observation, and physical artefacts [10].
While conducting the case study the researcher had access to the
following sources of evidence:
* Company documentation
* Collective group notes from workshop
* Whiteboard drawings of company practices collected from workshop
* Researcher notes of workshop discussion
* Anecdotal evidence from company employees
Prior to an onsite visit to the case study company, the researcher had
access to internal company documentation. These documents included
information on product derivation practices within a particular business unit,
organisational structure of the company’s SPL teams and information on various
derivation techniques applied within the various business units. The researcher
performed an initial review of company practices based on this documentation.
This initial review of company practices would be used to facilitate discussion

during the onsite visit.

For the onsite visit to the company, the researcher organised a two day
workshop. The main theme of the workshop was product derivation practices
within the case study company. The researcher examined the company product
derivation practices under a number of headings:

e Activities

* Artefacts

» Stakeholders
* Tools

* Techniques
* Constraints
* Openissues

Two other researchers, one of whom had extensive experience in
conducting case study research, accompanied the primary researcher. Each

researcher had a specific role for the workshop; one recorded the workshop

discussion through note taking and a second recorded the main points on a
projected PowerPoint presentation. Note taking in this manner helped the
workshop discussion in two ways. Firstly, it kept everybody involved in the
discussion and kept the discussion on track. Secondly, projecting results
encouraged the workshop group members to form a consensus on topics. The
third researcher was responsible for the whiteboard. The whiteboard was used
to illustrate company practices, and all company employees were encouraged to
actively engage with the whiteboard. Each whiteboard drawing was printed
before the board was wiped clean to serve as a record of the discussion. In Figure
1, a sample whiteboard drawing shows one of the steps in the company’s
product derivation process. This figure describes how the step ‘Resolve Variation
Points According to Customer Requirements’ took various inputs such as the
Product Software Requirements Specification (P-SRS) and produced outputs

such as the Product Software Architecture.

<TEP 34 A N -
) ’ SW;M@ -
oty
525 - M Plabhoen Gruponss 4 | oli4 - glmd— zt;:y
(:mr..a) el wril-n iy
. Voriadn T v o
V 'PlﬁTF'ORH 2 Mty 7

Resohe Unriokes ?.a.ulf e
Alemdng to Coghy Koy,)

‘t\;o.ilota(P,./“,; Su
leHeonm

(T;- bred Pladlon
v M

Tailoced
levihorm
v Dagn Spec.

Figure 1 Sample Whiteboard Drawing from the Case Study Workshop

After the workshop the collected data was used to create a technical
report on the company derivation practices. The technical report described the
company process of deriving an individual customer product from the product
line platform. The report contained information on tools used to assist in

derivation projects and organisational structure and roles within those

derivation projects. The researcher made recommendations for the introduction

of Agile elements in the companies derivation process.

3 Platform Overview

The Platform consists of two main types of artefacts:
1. Supporting documents
a. Specification of requirements, architecture and tests
2. Product components
a. Software and Algorithm Components
b. Hardware Modules
c. Housing Concepts
The scope of the Platform (features included and excluded) is defined by
introducing a number of typical product types. A product type is a typical
product built from the Platform.

The modules from the platform can be taken as a starting point for
designing and implementing customer-specific modules. Note: In the Platform,
an “interface” is a mechanism for the implementation of variability, i.e. “open
connectors” in the platform. Some “interfaces” are still open after integrating the
modules of the Platform Library and require the integration of further customer-
specific modules. Interfaces between the different modules of the Platform
Library are not considered as “interfaces”.

A customer product is never built from scratch. A customer Product is
always based on existing assets (requirements, design, code etc.). Either 1) The
basis for the customer Product is the platform or 2) some precursor components
(from pervious projects within the platform). However, this would only happen
in a special case when everything becomes more mature.

The platform defines a number of rules.

Rule 1: Platform assets (architecture, design, software and algo modules
etc.) should not be changed in customer projects (what is part of the platform->)

The Platform assets are flexible to some degree using two main

mechanisms: They can be configured (via variability mechanisms) or some

provide interfaces and can be extended. If any platform assets have to be
changed, then all the module tests have to be redone.

The platform parts of the customer project should not be changed. The
customer-specific parts are realised in a subsystem. As a template for the
customer-specific subsystem, a Customer Template can be used. This is one of
the ‘typical’ product types that is used to define the product line scope.

Rule 2: Use the customer specific templates as a starting point for
creating the customer-specific part of the Platform-based product.

In a customer project, the Platform Library, Testing Bench and Customer
Template will be copied and taken as a starting point for the customer-specific
software architecture and design. The subsystems Platform Library and Testing
Bench are not changed. The subsystem Customer Template, however may be

used as a starting point for customer-specific software parts and modified.

4 Organisational Overview

In this section we describe the organisational structure of the companies product
line. The description mentions a number of roles, these roles are described in

more detail in the following section.

@‘ X
PLATFORM

SOFTWARE GUIDELINES
NG
) Y
< '%I‘
PLATFORM PLATFORM COMPONENT
ARTHFACT COMPPNENT REQUIREMENTS
REPO{ DEVEROPER
HARDWARE

INTEGRATION IMARCT REQUIREMENTS
PROBLEM ANALY SIS
—eee
PLATFORM PLATFORM INTEGRATOR 1\
CONFIGURATIONS

REQUEPT BASE
CONFIGURATIONS

‘é%—

PLAT}=
tARAGCER
PLATFORM
N
S]
N 5
PRODUCT 'TI ']\I
PLATEQRIM ACCERTRFJECT
REQUESTS REQUESTS

oy
gy

3

PRODUCT
2DUCT SPECIFIC
COMPONENT MPONENTS ARCHITECT C-SYRS PRODUCT|MANAGER
DEVELOPER
X
N
N
r
ARE cks
\ 4
@ CUSTOMER
v

PRODUCT

Figure 2 — Organisational Structure

4.1 Platform Team

The Platform Manager receives requirements from the Product Manager.
These requirements are specific product requirements that the Product

Architect wishes to see implemented by the platform. The Platform Manager

(he is interface, point of contact) passes the requested requirements to the
Platform Architect. The Platform Architect performs an impact analysis study
on the impact to the platform if the requested platform requirements are
implemented. The Platform Architect advises the Platform Manager who will
accept or reject the requested platform requirements. The platform
requirements, which are deemed suitable, and inline with the platform roadmap
are included in the platform development plan. The Platform Architect who
deems requirements as requiring either new platform component development
or adaptation of existing platform components decides the implementation plan
for these new requirements. Responsibility for the development/adaptation of
platform components is left to specific Platform Component Developers.

The Platform Integrator is responsible for integrating the platform
components and creating base platform configurations. It is the Platform
Manager who informs the Platform Integrator what configurations to build
and when to build them. The Platform Integrator is also responsible for testing
the created configurations using the test plans he receives from the Platform
Architect (In the platform the architect has a powerful role because he is
responsible for the technical infrastructure. He has to coordinate the technical
activities).

If the Platform Integrator has any problems integrating the platform
components for a specific configuration he informs the Platform Component
Developer. The Platform Component Developer who is responsible for the
particular component causing the integration difficulty must adapt or change the
component.

The Platform Test Team creates the system test plan, which they use to

guide them when testing base configuration created by the Platform Integrator.

4.2 Product Team

Each Product Manager is responsible for a particular customer product, for
example an airbag control system for BMW. The Product Manager
responsibilities include: customer relationship management, negotiating
customer requirements and liaising with the Product Architect regarding the

final product requirements.

The Product Architect receives the product requirements from the

Product Manager. The Product Architect plays a key role in coverage analysis

asking “What does the platform have to offer the Product Team?’. The Product

Architect through the Product Manager makes specific Platform Requirements

Requests to the Platform Manager (
@. S|
PLATFORM
SOFTWARE GUIDELINES
. N,
< N
N
PLATFORM ﬁa PLATFORM COMPONENT
ART COMPPNENT REQUIREMENTS
REPO$ITORY DEVEROPER
HARDWARE

s

g 3
INTEGRATION IMRACT REQUIREMENTS|
PROBLEM ANALY SIS
—
PLATFORM PLATFORM INTEGRATOR 1\
CONFIGURATIONS
REQUEPT BASE
CONFIGYRATIONS
A
PLATl=
F’WV‘GER
PLATFORM
NN
N)
\ Y
PRODUCT 'TI TI
PLATEQRM ACCERTIREJECT

REQUESTS

COMPONENT
DEVELOPER

<

PRODUCT
ARCHITECT

gy

C-SYRS

PRODUCTIMANAGER

PRODUCT

CUSTOMER

REQUESTS

). These requests are product requirements that the Product Architect wants to
see implemented at platform level. The Platform Manager will either reject or
accept these requirements depending if they fall under the scope of the Platform.
If the requested requirements are accepted then these new platform
requirements will be implemented and become accessible to the Product
Architect in a new platform release.

The Product Architect assigns product requirements to Product
Specific Component Developers. They implement the customer specific

components that satisfy specific product requirements.

5 Roles and Responsibilities

The case study company had a number of roles and associated responsibilities.
These roles were:

* Platform Architect

* Platform Integrator

* Platform Component Developer

* Platform Manager

* Customer Specific Component Developer

* Product Developer

* Product Manager

5.1 Platform Architect:

* Defines the Platform Architecture

* Ensures that guidelines of Platform Architecture are achieved by Platform
Development

* Impact analysis for Platform Architecture changes

* Define System Test Plans

* Tests pre-assembled platform configurations. Partial solutions formed

and integration tested

5.2 Platform Integrator

* Integrates Platform Components up to whole system (incl. base

configurations)

Tests the integrated system

5.3 Platform Component Developer (SW/HW)

Design and Development of Platform Assets
Requirements engineering for Platform Assets
Reviews and Tests of developed components

Provide Test Plan for Product Developers

5.4 Platform Manager

Requirements management for Platform Assets

Defines scope for platform

Define Platform Configurations

Delivery (to Product Development)

Responsible for reusability of components (e.g, reuse degree of

components)

5.5 Customer Specific Component Developer

Development of customer specific components
Analysis of requirements

Analysis of platform assets

Adaption of platform assets

Development of customer specific asset
Review and Test in the intended configuration

Delivery

5.6 Product Developer / Product Architect

Planning and assembly of SW products from assets and customer specific
components

Analysis of product requirements

Identification of necessary components (existing and new)

Requests new requirements from Platform and Customer Specific
Developers

Tracks Customer Specific and Platform Development

Product Integration

Product Testing

¢ Product Release

5.7 Product Manager

* Customer relationship management

* Involved in Product sales and negotiates Product Features with Customer

* Develops project plan for Products

* Controls budget and time tables of product development

* Product Release planning

6 Derivation Process

In this section, we describe the steps to construct a product from the platform. A

customer product is never built from scratch. A customer Product is always

based on existing assets (requirements, design, code etc.). A customer product

will either be based on the platform or some precursor components (from

pervious projects within the platform). The product derivation steps described

below apply for the case when the Platform is used as the basis of the customer

Product.
SYRS:
CRS:
SRS:
RS:

P-<rs>:
C-<rs>:

SYRTP:

SRTP:
Algo:

System Requirements Specification

Customer Requirements Specification

Software Requirements Specification

Requirements Specification

Platform requirements specification

Customer-Specific requirements specification

System Release Test Plan

Software Release Test Plan

A type of subsystem where all firing logic for the sensors is
developed. Algo performs a type of software development.

Software, Hardware, Sensors, Mechanics

6.1 Rationalising the CRS

The CRS is the primary input for the creation of the C-SYRS. The CRS may consist

of an entire collection of requirements specification documents. In general, it will

contain both system-level requirements and also requirements particular to the

hardware components buried deep in the system design.

The CRS must be translated from a customer document to an internal
organisational document, this process is also known as rationalising the requirements
(see Figure 3). To translate the customer document the Product Manager must adapt
the language within the CRS to the organisational language and change the structure
to fit internal organisational documentation structure. To perform requirements
translation the Product Manager needs to know both the internal organisational
language and the customer language. The Product Manager uses the Product Glossary
as a reference during the translation process. The Product Manager does not need

detailed technical knowledge of the platform.

The output of this step is the Customer System Requirement Specification (C-

SYRS). The C-SYRS contains cross-discipline requirements.

RAW
CRS CUSTOMER

REQUIREMENTS
P-SYRS RATIONALISE DISCIPLINES
REQUIREMENTS AVAILABLE

C-SYRS

A,

IN INTERNAL

_/—\ LANGUAGE

N
! i

COVERED BY MAPPED TO
PLATFORM (YESINO) DISCIPLINE (HWISW)

Figure 3 Creating the C-SYRS

6.2 Coverage Analysis

The Product Manager performs a coverage analysis examination on the C-SYRS (see
Figure 4). Coverage Analysis is a comparison of the C-SYRS and the P-SYRS. The

Product Manager uses the tool DOORS to assist in requirements traceability. Through

Coverage Analysis the Product Manager discovers which customer requirements are

covered by the platform.

Coverage analysis can prove complicated for the Product Manager. The P-
SYRS contains requirements at the system level, whereas the C-SYRS may contain
requirements from different design levels. Requirements from the C-SYRS and the P-
SYRS may have different granularity. As a consequence, it may be difficult to
compare such requirements. The C-SYRS may contain requirements, which are not
contained in the platform; it may not be clear how such requirements should be

handled.

The Product Manager also needs extensive domain experience. If specific
requirements cannot be completely satisfied, they are broken into smaller
requirements and then mapped to specific components. This additional information is

now included in the C-SYRS.

Platform | Product

Product

Requirement 1 X

Product
Requirement 2

Product
Requirement 3

Figure 4 Contribution of Coverage Analysis to C-SYRS

6.3 Software/Hardware Mapping

The Product Architect defines where C-SYRS requirements can be implemented (see

Figure 5). The results of this task are documented in the C-SYRS.

Software | Hardware
Product X
Requirement 1
Product X
Requirement 2
Product X
Requirement 3

Figure 5 Contribution of Software/Hardware Mapping to C-SYRS

6.4 Discipline Mapping
The primary goal of discipline mapping is to map unsatisfied requirements

(requirements which cannot be implemented through a configuration of platform

components) to specific teams (see Figure 6) e.g. Algo, hardware, software, sensors,

mechanics.

The Product Manager performs discipline mapping (see Figure 7). Discipline
mapping involves allocating requirements from the C-SYRS to different
organisational disciplines within the platform, such as hardware, algo (algorithms) or
software disciplines. Discipline mapping should be a quick process, the emphasis is
on speed not precision. The Product Manager should be able to perform discipline

mapping without the involvement of the Product Architect.

Software | Hardware | Algo Sensors |[Mechanics

Unsatisfied
Product X
Requirement 1
Unsatisfied
Product X
Requirement 2
Unsatisfied
Product X
Requirement 3

Figure 6 Contribution of Discipline Mapping to C-SYRS

It

CUSTOMER

- ADAPT LANGUAGE

- ADAPT STRUCTURE

C-SYRS - COVERAGE ANALYSIS

Figure 7 Rationalising the requirements

6.5 Creating the C-SYRTP
The Product Manager creates the Customer System Requirements Test Plan (C-
SYRTP) based on the C-SYRS (see Figure 8). The Product Manager writes test cases
for the requirements contained in the C-SYRS. As a starting point the P-SYRTP is
used. Particular test cases can be added and deleted from the P-SYRTP in a similar

way to that used in coverage analysis. This forms the basis for the C-SYRTP. The

Product Manager utilizes the DOORS tool to map each test case to a specific

customer requirement.

The output of this step is the C-SYRTP.

C-SYRS

P-SYRTP CREATE TEST
d PLAN

C-SYRTP

\/_\

Figure 8 Creating the System Test Plan

6.6 Scope Requirements Implementation

The Product Architect scopes customer requirements deciding if the customer
requirement should be implemented in the product or if a request for platform
implementation should be made (see Figure 9). Market forecasts, resources,
implementation costs and Intellectual property issues all influence the Product
Architects scoping decision. Intellectual property becomes an issue when a
customer wants a customer-only-solution and does not want their features to
become part of the general platform features. The Product Architect uses impact
analysis models, decisions models and effort estimation models to assist in the
decision making progress.

[t should be noted that only requirements not covered by the platform

are relevant input here.

SOFTWARE
C-SYRS
HARDWARE

MAKE DECISIONS ABOUT Market forecasts, resources,implementation
REQUIREMENTS [— costs, budget, time constraints, IP issues
IMPLEMENTATION (Customers want features ‘exclusively’)

A 4
C-SYRS
DECISION
MODEL

Figure 9 Deciding requirements implementation

6.7 Exploring the C-SYRS

The Product Manager separates the requirements contained in the C-SYRS into
the platform and product specific requirements. The requirements destined for
the platform are added to the P-SYRS. As a result of the platform requirements
changing the P-SRS and the P-HRS must be changed also to reflect the amended
P-SYRS. These changes are based on the platform system architecture (see

Figure 10).

C-SYRS
(PLATFORM)

C-SYRS SOF TWARE
(PRODUCT)

HARDWARE

SYSTEM
COPYTOP-SYRS ARCHITECTURE
DECISION (PRODUCT)

SW INTERFACE4‘—HW INTERFACE

A 4
e W m

SYSTEM
P-SYAS ARCHITECTURE
DECISIONS

L (PLATFORM)

P st p s m

Figure 10 Separating the C-SYRS

Based on the product requirements the Product Architect makes
architectural decisions. In particular the C-SRS and C-HRS will need to be
updated to reflect among other things interface requirements to allow
communication between hardware and software components.

The Product Architect should be able to demonstrate evidence of
traceability for System Architecture Decisions including:

* Making decisions relating to product architecture
* Deriving Platform Design requirements for SW + HW (P-SRS/P-HRS)

* Link new requirements to P-SYRS

At this step, both the platform and product teams are implementing
certain customer requirements. A type of race condition is sometimes used in
this situation. See Figure 11 on configuration and release management within
the platform. An example of the race condition can be found in the warning lamp
example, where both product and platform race for the single pin in the platform
component.

In Figure 11, we can see how configuration and release management
operates in the platform. The platform line contains mainline platform artefacts.
When the customer requirements are received, a customer specific architecture

is derived from the mainline platform architecture. This becomes a separate,

customer specific, branch of the platform. Concurrent to this, the product team is
developing a product specific development line. The product specific and
customer derived platform line are merged when development finishes. The
platform development which is deemed to have reuse potential is merged back

into the platform mainline.

CUSTOMER
PLATFORM
. REQUIREMENTS

PLATFORM CUSTOMER-
SPECIFIC SPECIFIC
DEVELOPMENT DEVELOPMENT

HWISW IN SYNC

v
Figure 11 Configuration and release management in SPL
Both the Platform and Product Architect use DOORS' for analysis and

configuration within the product and platform architecture. AMEOS? is used for

project management aspects, where traces from / to:

= C-SYRS+
= C-SRS/C-HRS
= P-SYRS

= P-SRS/P-HRS

" http://www.telelogic.com/corp/products/doors/
? http://www.ameos.com/en.html

6.8 Define and Link Test Cases

DEFINE TEST CASES FOR ALL
NEW REQUIREMENTS

LINK TEST CASES TO CORRECT
REQUIREMENTS

A y
P-SRTP C-SRTP

PLATFORM CUSTOMER

DEVELOPER SPECIFIC
COMPONENT
DEVELOPER

Figure 12 Define and Link Test Cases

For the platform customer specific components and the product only components, test
cases are defined and linked. The Platform Developer is responsible for writing test
cases and linking them to particular platform requirements. The Customer Specific
Component Developer is responsible for writing test cases for customer specific

components and linking these test cases to specific customer components.

Both the Platform Developer and Customer Specific Component Developer

use DOORS to facilitate the linking of test cases to requirements.

6.9 Create Initial Baseline in MKS
The Product Manager takes the C-SYRS and from it, makes amendments to the P-
SRS and the C-SRS. The amendments include the addition of platform requirement
requests from the Product Managers customers. The product specific requirement

requests form the C-SRS (see Figure 13).

m o
P-SRS C-SRS

REQUIREMENTS:
In Platform
New and goesto Platform
New and customer specific

Figure 13 The scoping of requirements in the C-SYRS

Take the example shown in Table 1. Given six requirements in the C-SYRS,
each sample requirement is scoped and falls under one of the following headers: The
requirements are covered by the platform, the requirements result in new platform

requirements or the requirements are specified as product specific.

Covered by scope | New Platform | New Product
of Platform? Requirement? Requirements?
Requirement 1 YES
Requirement 2 YES
Requirement 3 YES
Requirement 4 YES
Requirement 5 YES
Requirement 6 YES

Table 1 Six example requirements in the C-SYRS

The Product Team use a configuration file to configure the generic
platform components into platform product components. The configuration file
describes the properties of the product specific version. The new customer
specific components are integrated with the configured platform components to
form a partial product configuration. Figure 13 graphically illustrates this

process.

6.10 Creating the Product Baseline
The Platform Manager amends the P-SRS to include the new requested requirements.
The Platform Architect takes the P-SRS and uses it to establish a customer platform

baseline in MKS. This involves extending the existing platform software architecture

to facilitate new platform requirements. As a result of deriving a product baseline

from the Platform Architecture, a modified P-SAS is created to reflect the changes.

To form the initial baseline the Platform Architect copy relevant parts from
the platform and precursor customer projects. Unnecessary components are removed.

The remaining components are modified as necessary in order to get a compatible

P-SRS CSRTP C-SRS

Y

EXTEND EXISTING PLATFORM P_SAS DESIGN, IMPLEMENT
SATOFACILITATE NEW < =OPTION A+<» AND TEST CUSTOMER == ——
PLATFORM REQUIREMENTS | |SPECIFIC COMPONENTS

A 4

CUSTOMER SPECIFIC
P-SAS* COMPONENTS
(SOURCE CODE)

| — — — — 4F OPTION AWAS CHOSEN———Ir ———————————————— -

system.

IF OPTION A
WAS CHOSEN
(2"°ITERATION
CHECK WOULD BE OPTION B)
COMPATABILITY 1
OF COMPONENT

INTERFACES

Figure 14 Creating initial product baseline

Concurrently to the Platform Team deriving a customer product from platform
architecture, the Product Team are designing, implementing and testing customer

specific components.

6.11 Design and Implementation of new Platform Components
The Platform Architect uses the P-SRS and the P-SAS to design and allocate platform
component development. The Platform Software Design Specification (P-SDS) is
used to document the planned component implementation as seen by the Platform
Architect. It is the responsibility of the Platform Developer to implement the

requested components.

A

DESIGN, IMPLEMENT AND
TEST NEW PLATFORM r————————— —— |
COMPONENTS

PLATFORM
COMPONENTS (SOURCE
CODE) + VARIATION
POINTS

A A
NEW PLATFORM COMPONENTS
P-SDS (SOURCE CODE) + VARIATION
POINTS

Figure 15 Design and Implementation of new platform components

The Platform Developer creates the new platform components with variation
points as stated in P-SDS. The Platform Architect will use configuration management
tools to facilitate in component design. Until the Platform Team has implemented the
requested product platform amendments, the Product Team cannot complete product

construction.

6.12 Tailoring the Platform Architecture

The Product Architect makes a copy of the latest platform version. This new version
contains the platform changes implemented in Design and Implementation of New
Platform Components. The Product Architect tailors the platform architecture to form
the product architecture and resolves variation points according to customer

requirements.

PLATFORM COMPONENTS
P-SAS (SOURCE CODE) +
VARIATION POINTS

A

RESOLVE VARIATION ________________________-3"—AE:2R_M.

POINTS ACCORDINGTO
CUSTOMER REQUIREMENTS PRODUCT

CUSTOMER
PRODUCT TAILORED PLATFORM TAILORED PLATFORM SPECIFIC
PL;'I'All-'LCSI’?RNIIEgRS SOFTWARE SOF TWARE DESIGN COMPONENTS COMPONENTS
ARCHITECTURE SPECIFICATION (SOURCE CODE) (SOURCE CODE)
TAILORED
PLATFORM SW
ARCHITECTURE REQUIRED COMPONENTS TO BUILD

PRODUCT

Figure 16 Tailoring the Platform Architecture

6.13 Integrating the Product

From Step 3d From Step 3b

TAILORED
PLATFORM
COMPONENTS (SC)

CUSTOMER SPECIFIC
COMPONENTS (SC)

A

BUILD
SOF TWARE
PRODUCT

PRODUCT
BINARY CODE

\/\

Figure 17 Product Integration

The Product Developer integrates the product taking both the tailored platform
components and customer specific components. The Product Developer builds the
software product and the resulting output is product binary code. Typically the
compiler, which the Product Developer uses to build the product, is optimised to

specific hardware architecture.

TAILORED CUSTOMER
PLATFORM SPECIFIC
COMPONENTS COMPONENTS

°
o

-®
°
e

Figure 18 Linkage of platform and customer specific components

6.14 Integration Testing

TAILORED PLATFORM/
CUSTOMER SPECIFIC
COMPONENTS(SC)

PRODUCT
BINARY CODE

1

PERFORM
INTEGRATION
TEST

Y

TEST REPORT

\/F\

)

RESOLVE TEST
OPTIMAL PROBLEMS

TESTED
PRODUCT

BINARY CODE

Figure 19 Performing Integration Testing

The Product Developer performs integration testing on the product using both
platform and product test plans. The P-SRTP and C-SRTP contain both unit test cases

and integration test cases.

Done in step 7
; & step 8

INTEGRATION

UNIT TEST

CASES TEST CASES

Figure 20 the contents of P-SRTP and C-SRTP

The result of the integration testing is a testing report with all diagnosed test
problems. The Product Developer uses a workbench to test the software in its target

hardware environment.

7 Discussion

The main observations obtained from the case study on industrial product
derivation practices were:

* Additional Development Disciplines

* Additional Roles and Tasks

* Platform-Product Synchronisation

e Use of Documentation

7.1 Additional Development Disciplines

The organisational structure for a particular business unit engaged in product
derivation is broken into three broad disciplines; software, hardware and
mechanics. Within each of these disciplines there are further sub-disciplines. For
instance, the hardware discipline has a microcontroller team and an ECU
(Electronic Control Unit) team. The mechanics discipline has housing,
mechanical quality and interfaces and plugs teams. The software discipline had

basic software and algorithms teams.

7.2 Additional Roles and Tasks
During the case study a number of product derivation roles were observed. For
example, the software product team consists of architects, developers,

integrators, testers, and customer specific component developers. These roles

are replicated across the independent product sub-discipline teams and platform

teams. Moreover, similar roles exist for hardware and mechanics.

SPL
Organisation
Platform Product 1 Product 2 Product n
(.
Al A
Discipline Discipline Discipline Discipline
Electronics Software Mechanics n
& Manager
() Architect
& Developer|
O Tester
N\
([Al A
Team Team Team Team
General Algorithms Hardware n
Software Drivers
6 Manager) Manager T
(YArchitect (Y architect
D P ()P p
6 Tester Y Tester

Figure 21 Role Structures

These intricate role structures are reflected by appropriate
communication and task structures. For instance, the allocation of requirements
to responsible teams has to consider the various disciplines and sub-disciplines.
This requires a higher degree of granularity for requirements management tasks
than originally envisaged. This can be observed when the case study company
starts a product-specific project. During the early phases, the customer
requirements are translated into a set of internal company documents. These
documents are processed and augmented during various tasks where
requirements are analysed for reuse potential and then assigned to responsible
disciplines and sub disciplines.

Another consequence of this distributed development across both
disciplines and platform and product teams is the raised importance of

modularisation. Consequently, interface management is performed as an explicit

task and encapsulation is a key design property for component development; a
software component should ideally be independent of how a sensor, actuator or

microcontroller works internally.

7.3 Platform-Product Synchronisation

Within the case study company, product development requires a high degree of
coordination and communication as the heavy dependencies across disciplines
and the platform product divide is managed. In the observed platform product
dependencies are illustrated.

The product team both designs and implements customer specific
components based on the customer requirements. The platform team receives
the platform software requirements containing the required extensions to the
existing platform in order to facilitate the new customer requirements. Both the
customer-specific and platform development is occurring in parallel. The
product team needs to interface correctly with the new platform release. Here,
the product team can choose between two alternative development strategies.
Option 1 is to design and implement customer specific components using the
current platform release, which has not yet been updated, as a basis for
development. Consequently, when the new platform architecture is released the
product team has to check the compatibility of the developed components with
the new architecture.

Option 2 for the product team is to wait for the updated platform
release. This is suggested when potentially large compatibility issues are
expected with the risk of wasted development effort.

A third hybrid option, not illustrated in Figure 22, is for the product
team to first negotiate a platform interface with the platform team before
proceeding to develop in parallel against the platform team. Alternatively, the
product team can make assumptions on expected interface changes, and work
from these expectations. After the updated platform release the product team

check the compatibility of the developed components with the new architecture.

Platform

Platform Software
Requirements

Platform Software
Architecture
(current)

Extend existing

platform system

architecture (to
facilitate new

> Option 1
(use current
architecture)

~

Customer Software
Requirements

Design and
Implement
Customer-specific
components

requirements)

e

e
Option 2
v (wait for updated v

architecture)
e
Plagfgm:;gxare g Customer-specific
(updated) Components
N~
= |
LEGEND ~)
Option 1 |
(2nd Step)
\ ¢
Work ~ \‘[/ _____ \
Product |
| [for Option1]
_ Check compatibility |
~ - |
[| |
| : Task -
{)

Figure 22 Synchronisation Caused by Platform-Product Dependency

These outside dependencies that the product team must handle are a
reoccurring process pattern within product derivation. Similar dependencies can
be seen during software integration with the hardware modules. The software
product team can choose one of the development strategies similar to those
described, for handling the hardware interfaces during parallel software and

hardware development.

7.4 Use of Documentation

The case study company relies heavily on documentation to drive the product
derivation process. Documentation is used to facilitate communication and
synchronise development between the product and platform teams, between the

different hardware, software and mechanical disciplines and also between the

sub-disciplines. It is also used as a milestone to plot project progress and as a
driver to trigger certain tasks within the project. Additionally, in certain
domains, law requires evidence of due process. Some documents satisfy this

condition.

8 Conclusion

The observations from this technical report are based on data collected on the
product derivation process of a software-intensive automotive product lines. The
observations from this study are detailed here. The observations are focussed on
the organisational overview of the SPL, roles and responsibilities and the
product derivation process within the company.

During the case study a number of product derivation roles were
observed. For example, the software product team consists of architects,
developers, integrators, testers, and customer specific component developers.
Product development requires a high degree of coordination and communication
as the heavy dependencies across disciplines and the platform product divide is
managed. The case study company relies heavily on documentation to drive the
product derivation process. The findings from this case study were used in the
development of Pro-PD [13, 14].

The report contributes to an improved understanding of industrial
product derivation practice. It can be considered a source of empirical evidence
for derivation practice and thus can enrich existing theory on product derivation

practice.

9 References

1. Clements, P. and L. Northrop, Software Product Lines: Practices and Patterns.
2001, Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

2. Hotz, L., A. Gunter, and T. Krebs, A Knowledge-based Product Derivation
Process and some Ideas how to Integrate Product Development, in Proc. of
Software Variability Management Workshop. 2003: Groningen, The
Netherlands.

3. Deelstra, S., M. Sinnema, and J. Bosch, Product Derivation in Software Product
Families: A Case Study. Journal of Systems and Software, 2005. 74(2): p.
173-194.

4. Deelstra, S.,, M. Sinnema, and]. Bosch, Experiences in Software Product
Families: Problems and Issues During Product Derivation, in Software
Product Lines, Third International Conference. 2004, Springer: Boston, MA,
USA.

5. Griss, M.L., Implementing Product-Line Features with Component Reuse. ICSR-6:
Proceedings of the 6th International Conference on Software Reuse. 2000,
London, UK: Springer-Verlag. 137--152.

6. Rabiser, R, P. Griinbacher, and D. Dhungana, Supporting Product Derivation by
Adapting and Augmenting Variability Models, in 11th International
Software Product Line Conference. 2007: Kyoto, Japan.

7. Walsham, G., Interpreting Information Systems in Organizations. 1993, New
York, NY, USA: John Wiley & Sons, Inc. 286.

8. Orlikowski, W. and J]. Baroudi, Studying Information Technology in
Organizations: Research Approaches and Assumptions. Information
Systems Research, 1991.

9. Perry, D., S.E. Sim, and S. Easterbrook, Case Studies for Software Engineers, in
Proceedings of the 26th International Conference on Software Engineering.
2004.

10. Yin, R, Case Study Research : Design and Methods. 2003, Beverly Hills, CA:
SAGE Publications.

11. Hammersley, M., R. Gomm, and P. Foster, Case Study Method: Key Issues,
Key Texts. 2000, London: Sage Publications.

12. The SPLC Product Line Hall of Fame. 3/02/2009]; Available from:
http://www.splc.net/fame.html.

13. O’Leary, P., R. Rabiser, L. Richardson, and S. Thiel. Important Issues and
Key Activities in Product Derivation: Experiences from Two Independent
Research Projects. in Software Product Line Conference. 2009. San
Francisco, CA, USA: Proc. of the 13th International Software Product Line
Conference (SPLC 2009).

14. O’Leary, P., F. McCaffery, S. Thiel, and I. Richardson, An Agile Process
Model for Product Derivation in Software Product Line Engineering (in
press). Journal of Software Maintenance and Evolution, 2010.

	Lero-TR-2010-03.pdf
	Lero TR on Industrial PD.pdf

