
 

 

 

Social Adaptation  

When Software Gives Users a Voice 
Raian Ali 
Lero – The Irish Software Engineering Research Centre 
University of Limerick, Ireland 
 
Carlos Solis 
Lero – The Irish Software Engineering Research Centre 
University of Limerick, Ireland 
 
Inah Omoronyia 
Lero – The Irish Software Engineering Research Centre 
University of Limerick, Ireland 
 
Mazeiar Salehie 
Lero – The Irish Software Engineering Research Centre 
University of Limerick, Ireland 
 
Bashar Nuseibeh 
Lero – The Irish Software Engineering Research Centre 
University of Limerick, Ireland 
 
November 2011 

Contact 

Address  ..........  Lero 
International Science Centre 
University of Limerick 
Ireland  

Phone  ..............  +353 61 233799 

Fax  ...................  +353 61 213036 

E4Mail  ..............  info@lero.ie 

Website  ...........  http://www.lero.ie/ 

 

Copyright 2011 Lero, University of Limerick 

This work is partially supported by Science Foundation Ireland 
under grant no. 03/CE2/I30341 Lero Technical Report Lero4TR4SPL42008401 Lero Technical Report Lero4TR42011405 



Technical Report Lero-TR-2011-05, The Irish Software Engineering Research Centre
University of Limerick, Ireland. November 2011

Social Adaptation
When Software Gives Users a Voice

Raian Ali, Carlos Solis, Inah Omoronyia, Mazeiar Salehie, Bashar

Nuseibeh
Lero, University of Limerick, Ireland

Abstract Adaptation requires a system to monitor its
environment so that when changes occur, a suitable
adaptation action is planned and taken at runtime. The

ultimate goal of adaptation is that users get their dy-
namic requirements met efficiently and correctly. Users
are the primary decision makers about the correctness

and the quality of adaptation and their feedback is
primitive to continuously guide adaptation along the
lifetime of a system. In this paper, we propose social

adaptation which gives users a voice in planing adap-
tation. To this end, the system has to be designed to
obtain and analyze users feedback repetitively and se-

lect upon the behavior which is socially judged to be
the best for meeting requirements. Social adaptation
treats users as system collaborators rather than pure

consumers of system’s functionalities so that users per-
ception becomes an integral part of the computation of
a system. We propose a requirements engineering mod-

eling and analysis framework for systems built to enact
social adaptation. Finally, we evaluate our framework
on a case study of socially-adaptive messenger system

and report on the results.

1 Introduction

Self-adaptive systems are designed to autonomously mon-

itor and respond to changes in the operational envi-
ronment and the system own state [1]. Each change
can trigger a different response to satisfy or maintain

the satisfaction of certain design objectives [2]. Self-
adaptive systems have basic design properties (called
self-* ). Self-protection property means the ability to

monitor security breaches and act to prevent or recover
from their effects. Self-optimization means the ability

to monitor the resources availability and act to enhance
performance. Self-healing means the ability to monitor
faults that have occurred or could occur and cure or

prevent their effects. Finally, self-configuration means
the ability to monitor changes related to all of the other
properties and add, alter, or drop upon certain software

entities [3].

Self-adaptivity is highly reliant on the system abil-
ity to autonomously monitor the drivers of adaptation

(security breaches, the available resources, faults and
errors, etc.). Arguably, there are drivers which are un-
monitorable by relying on solely automated means as

proposed by Ali et al in [4]. The judgment of users of
the successfulness and quality of each of the system
alternatives as a way to meet requirements, is an ex-

ample of that. Such judgment is a primary driver for
adaptation to decide upon what alternative to enact
and maximize users’ satisfaction. Hence, we advocate

that social feedback is essential to give users a voice
in planing adaptation. We define Social Adaptation as
the system ability to obtain and analyze users’ feedback

and choose upon a system alternative which is socially
judged to be the best to meet requirements in a specific
context.

Social feedback can support a feasible and correct
systems adaptation. This is particularly true for high-
variability systems which incorporate a large number of

alternatives. For such systems, a large number of users
will be required to validate all of the system alterna-
tives. Establishing such validation as a design time ac-

tivity which is directed by designers (as often done in
usability testing and user-centred design [5,6]) is highly
expensive, time-consuming and hardly manageable. So-

cial adaptation allows the actual users to act as valida-
tors and give feedback at runtime so that the system
can analyze such feedback and validate upon each sys-

tem alternative. Thus, social adaptation helps to eval-



2

uate and adapt upon high-variability systems rapidly

and effectively.

Social adaptation advocates the repetitive obtain-

ment and analysis of social feedback to keep adapta-
tion up-to-date. Due to the volatile nature of the world,
users’ judgment of the system could change over time.

Thus, a one step design-time system validation and cus-
tomization might lead to decisions which are correct but
only temporarily. For example, users’ who currently like

interacting with the system via touch screens, might
dislike it in the future when a better interaction technol-
ogy is devised. Users’ evaluation of a system alternative

is not static and what is proved to be valid during the
design-time validation may become eventually invalid.

Requirements are the main subject of social feed-

back and thus social adaptation is in the first place
a requirements-driven adaptation. Upon the execution
of a system alterative, users will be primarily concerned

whether their requirements are met correctly. Users would
also care about the degree of excellence of an execution
against certain quality attributes. In other words, so-

cial feedback concerns the validity and the quality of a
system alternative as a way to meet users’ requirement.
This judgment is affectable by context which, thus, has

to be monitored. The same system alternative could be
judged differently when operating in different contexts.
When a certain context occurs, social adaptation will

analyze the social feedback provided for each alterna-
tive when executed in that context and execute upon
the one which is socially judged to suit that context.

In this paper, we propose social adaptation which
enables users to be primary drivers for adaptation. It al-

lows users to continually express their judgments about
the the role of a system in meeting their requirements
and allows the system to enact the users’ choices. We

discuss the foundations and motivation of social adap-
tation. We provide a conceptualization of the main arte-
facts needed in a requirements model for enabling social

adaptation and discuss the use of goal models [7–10] to
identify these artefacts. We develop analysis techniques
to process social feedback at runtime and choose upon

the system alternative which is socially shown to be
appropriate to meet requirements. We evaluate our ap-
proach on a socially-adaptive messenger system.

The paper is structured as follows. In Section 2 we
discuss the key differences between social adaptation

and self-adaptation. In Section 3 we present an exam-
ple scenario to be used along the paper. In Section 4
we discuss the theoretical foundations of social adapta-

tion. In Section 5 we present the modelling artefacts of
social adaptation and the use of goal models to extract
these artefacts. In Section 6 we develop analysis algo-

rithms to process social feedback and adapt the system

at runtime. In Section 7 we evaluate our framework and

discuss the results. In Section 8, we discuss our devel-
oped CASE tool. In Section 9 we discuss the related
work and in Section 10 we present our conclusions.

2 Social Adaptation Vs. Self-Adaptation

Social adaptation is a distinguished kind of adaptation
which responds to the social judgment about the cor-
rectness and efficiency of a system in meeting users’

requirements. Social adaptation treats social feedback
as a primitive driver for adaptation. Social feedback
allows a runtime continuous evaluation of each of the

alternative behaviours of a system and, thus, enables
ranking the system alternatives. The alternative which
is socially proved to be correct and more efficient will be

the one to apply. In Figure 1 we outline the social adap-
tation loop where the system analyses social feedback
and decide upon which alternative behaviour to apply,

applies it, and finally gets and stores the feedback of
the users of that operation.

Analyse and 

choose alternative

Social 

Feedback 

Apply 

alternative

Obtain and store 

feedback

Fig. 1 Social Adaptation Loop

In what following we discuss the key differences be-

tween our proposed social adaptation and traditional
self-adaptation which is surveyed in [2]:

– The Monitored which represents information which

has to be monitored in order to decide upon a suit-
able adaptation action. In self-adaptation, a system
has to monitor changes in its operational environ-

ment and its internal state. Monitored events and
states could indicate security breaches which trig-
ger a self-protecting action, or new settings of the

available resources which trigger a self-optimizing
action, or faults which trigger a self-healing action.
In social adaptation, a system has to monitor the

social judgment about its role in meeting users’ re-
quirements. Such judgments concern human’s opin-
ions and conclusions rather than events and states

in the system internal and external environment.
– The Monitor which represents the entity that is re-

sponsible and capable of capturing the drivers of

adaptation. In self-adaptation, the system enjoys



3

an autonomous ability to monitor all information

which is necessary for taking adaptation decisions
which means that the monitor is a fully automated
component [11]. Social adaptation, on the other hand,

requires capturing its own kind of drivers, the users’
judgment, which is un-monitorable by relying on
solely automated means [4]. Social adaptation re-

quires a socio-technical monitor which involves users’
perception as an integral part of the system compu-
tation.

– The adaptation target which stands for the subject
and the goal of adaptation. Self-adaptation provides
a dynamic machinery to ensure that certain sys-

tem properties are maintained when changes hap-
pen. That is, the subject of adaptation is the system
itself and the goal is to guarantee certain properties

by preventing and acting against possible security
breaches, faults, low performance, etc. On the other
hand, social adaptation provides machinery to en-

sure that the system responds to the social judge-
ment of each of its alternative behaviors. Thus, the
subject of social adaptation is the users’ judgement
about the system and the goal is to maximize the

possibility of having positive judgement about the
role of the system in meeting their requirements.

– The decision maker which stands for the entity that

takes adaptation decisions. In self-adaptation, de-
cisions are planned by designers at design time so
that adaptation is deterministic [12]. The system at

runtime will monitor changes and apply a rationale
developed by the designers and take an appropriate
decision. In social adaptation, the decision makers

are multiple. Designers plan adaptation at design
time and leave the adaptation decision to be taken
collaboratively by both users and systems. Users

will interact with the system to provide their feed-
back and the system will analyse such feedback and
adapt according to the rationale provided by the de-

signers. Thus, adaptation is not determined by only
designers’ but it is also subject to users’ decisions.

– Evolution which refers to the eventual changes in

the adaptation rationale to keep adaptation up-to-
date. Self-adaptive systems follow an evolution ra-
tionale, which is planned at design time, until the

system apparently fails in taking correct adaptation
decisions. When this happens, an evolution has to
take place. To this end, the designers need to al-

ter system and make an evolved version able to
cope with the new situation. Besides the possibil-
ity of being subject to design time evolution, social

adaptation incorporates runtime evolution driven
by the users. A socially-adaptive system responds
to the users’ feedback which is itself likely to evolve

Table 1 Self-Adaptation Vs. Social Adaptation

Criteria Self-Adaptation Social-Adaptation

Monitored States and events Users’ judgments

Monitor System System and users

Target System properties Users’ satisfaction

Decision Maker Designers Designers and users

Evolution Designers Designers and users

over time, and thus the adaptation rationale itself

evolves. In other words, the evolution of the adap-
tation rationale is driven by the evolution of users
judgement about each system alternative with re-

spect to meeting their requirements.

3 Running Example

We consider the case of a gallery-guide system designed
to support the visitors of an art gallery. The system is
supposed to interact with visitors using PDAs given to

them by the receptionist upon registration. The pur-
pose of the system is to help visitors to ask and get
information about the art pieces in the gallery. To this

end, the system has to enable visitors of specifying an
art piece (through RFID reader, say). Upon that, the
system will convey information to visitors choosing au-

tonomously between two alternatives:

1. PDA-based system alternative. The system will use
the visitor’s PDA to explain, possibly interactively,

about the specified art piece.
2. Staff-supported system alternative. The system will

try to find a mentor to interact with the visitor and

explain the art piece. The system will also notify
the visitor about the approximate time for a mentor
to come to his place. It will also interact with the

mentor and direct him to the visitor’s location.

The designers are not fully certain of which alterna-

tive (PDA-based, Staff-supported) is more appropriate
than the other and in which context. As a solution, the
designers intend to build the system to obtain and ben-

efit from the visitors feedback for taking such decision.
This feedback will be obtained and analysed at runtime
to choose the alternative that better fits each execution

context. As a result, when a new visitor comes, the sys-
tem will process the feedback obtained in the past from
other visitors and select a system behavior that would

fit the new user in the current context.



4

4 Social Adaptation: Foundations

In this section, we discuss the theoretical foundations of
our proposed kind of adaptation, the social adaptation

(sketched in Figure 2).

Social Adaptation

Repetitive

Adaptation

Uncertainty

System 

Validity

System 

Quality

Context 

Influence

Social Feedback

System Validity

Un-monitorable 

Judgments

Variability

High-Variability 

Adaptation

Adaptation
�����������	��
��
�

��

����
��

������

�������
�
��


System Quality

System

Context

User 

Preferences

Fig. 2 Social Adaptation Foundations

4.1 Variability

The existence of variations is an essential characteristic
that enables and also justifies adaptation. In our ap-

proach, we deal with variability concerning the state of
the system environment (context [13]), the preferences
the users of the system might have, and the alternative

behaviors the system is provided with:

– Context variability. The variability of context neces-
sitates adaptation. If context is static and its value is
a priori known, the system can be also designed to

act uniformly without planning any adaptation to
its environment. For example, if the gallery-guide
system is designed to work within a single gallery

maintaining the same settings all the time and to
interact with visitors having the same characteris-
tics then the system can be adjusted, at design time,

to fit to those static settings.
– User preferences. Users of the system might have

different preferences which are another driver of adap-

tation. The system has to ensure compliance be-
tween its behavior and user’s preferences. For ex-
ample, a visitor might prefer “more comfortable”

than “more informative” system alternative. Thus,
the system could choose an alternative which sacri-
fices information richness for visitor’s comfort.

– System variability. Adaptation to variable context
and preferences requires providing the system with
multiple alternatives. Adaptation means the abil-

ity of the system to select the alternative that fits

each monitored context and enacted user’s prefer-

ence. For example, if the gallery-guide is designed
to support only the PDA-based system alternative,
then it may not be able to adapt to a context like

“visitor has no technology expertise” or the prefer-
ence of “visitor prefers minimum interaction with
computing devices”.

4.2 Uncertainty

The need for adaptation comes essentially from the in-
ability to take certainly-true and/or infinitely-true de-

sign decisions. Designers might make assumptions at
design time regarding the relation between the require-
ments, the system, and the world. These assumptions

might be, or eventually become, invalid when the sys-
tem operates in practice [14]. Adaptation is needed to
cope with the validity/invalidity of assumptions at run-

time. The uncertainty concerns mainly the decisions
about:

– System validity. It concerns the uncertainty in pre-

dicting if a system alternative is indeed able to reach
a specific requirement. For example, as a part of the
Staff-supported system alternative, sending a voice

message to a visitor telling the approximate time to
meet a mentor is just a potential way to make the
visitor aware of the time he has to wait. However,

creating such awareness by executing such function-
ality is never certain as visitors may miss the mes-
sage or misunderstand it. Validity could also evolve

over time. For example, even if currently the voice
message alternative is certainly valid, this does not
mean it will be infinitely valid. When, in the future,

the gallery-guide system issues more notifications
to meet new requirements, the degree of visitor’s
concentration on each specific voice message might

become lower and thus the alternative will become
practically invalid.

– System quality. It concerns the decision about the

degree of excellence of a system alternative. Quality
could consist of different attributes and the evalu-
ation of an alternative against each attribute can

be uncertain. For example, taking user’s comfort as
a quality attribute, it is unpredictable if the PDA-
based system alternative is more comfortable than

the Staff-supported one. Moreover, this might evolve
over time as people might become more comfortable
with PDAs after a period of time or vice versa.

– Context influence. Context influences both the sys-
tem validity and quality. While a design decision
about this influence could be certain in some cases,

it could be also uncertain in others. For example,



5

the design could presume that the validity of PDA-

based system alternative certainly requires a con-
text like “visitor has a good visual acuity” to hold.
The design could also presume that a context like

“PDA screen is big enough” is certainly supportive
to “visitor comfort” perceived as a dimension for
the quality of the PDA-based system alternative.

On the other hand, some other influences of con-
text could be uncertain. For example, the designer
can only assume that “visitor’s age” is relevant for

both the validity and the quality attribute “visitor
comfort” of the PDA-based system alternative but
without being certain of the age ranges supportive

to this validity and quality attribute.

4.3 Social Feedback

Users can judge and give feedback whether a system al-
ternative leads to reach their requirements and its qual-
ity. We classify social feedback into 2 kinds:

– System validity. It concerns whether a certain ap-
plied system alternative succeeds in meeting a cer-

tain requirement. Users are able to give feedback us-
ing requirements-related terms rather than software-
related ones. For example, upon executing the PDA-

based system alternative, a gallery visitor would
only give a Boolean answer saying “I could (not)
ask for and get information”. The visitors cannot

generally explain how the complexity or simplicity
of the HCI design prevented or facilitated the role of
the system in the process of asking for and getting

information.
– System quality. It concerns the degree of excellence

of a system alternative. For example, a visitor who

had to wait for long time to meet a mentor, would
admit the delivery of information, i.e. the require-
ment is reached, but would probably say “it was not

comfortable” (comfort is a quality attribute).

User-supplied feedback is a primitive driver for adap-
tation which is irreplaceable for the following reasons:

– Un-monitorability of judgments. A user’s judgment
of validity and quality is a human’s opinion which
is not always obtainable by relying solely on auto-

mated means [4]. For example, while the system can
monitor if a requirement like “visitor is out of the
gallery area when the gallery is to be closed” is met

by sensing the visitor’ location and movement, cer-
tain requirements cannot be monitored unless the
system asks the users. The validity of the PDA-

based system alternative with respect to meeting
the requirement “visitor can ask for and get infor-
mation” requires monitoring the visitor’s judgement

which is only possible if the user disclose it.

– Repetitive adaptation. As discussed before, certainty

is not always achievable when designing a system.
Moreover, certainty is not a static property. Thus, a
one-stage validation of a system against its require-

ments may lead to certainty at only the time of val-
idation. When time passes, what was valid at the
validation time may become invalid and vice versa.

Consequently, we need a repetitive validation and
adaptation to ensure up-to-date fitness between the
system and the requirements it is meant to meet.

Moreover, planned iterative design-time validation
would be inadequate as changes that influence the
validity and quality of the system are inherently

unpredictable. The solution is to enable this pro-
cess as a repetitive automated activity at runtime.
Users can give their feedback and adaptation can

take place while the system is operating. For exam-
ple, at an early stage of the system life, the users’
feedback could indicate that PDA-based system al-
ternative is not valid and that it has a poor quality.

When time passes and visitors become more familiar
with the use of PDAs, it might become a valid and
good quality alternative. In the future and when a

new communication technology is devised, this sys-
tem alternative may turn back to be inappropriate.

– High-variability adaptation. Variability is a corner-

stone for adaptivity as we discussed earlier in this
section. Adapting highly-variable systems, which in-
corporate a large number of alternatives, necessi-

tates asking the feedback of a large number of users.
In traditional usability testing, user experience, and
user-centric design, capturing users’ feedback is usu-

ally performed at design time and involves a limited
number of users. Applying these techniques on high-
variability systems would not be feasible due to the

number of users and cases and the amount of time
needed to cover all possible alternatives and context
variations. As a solution, social adaptation crowd-

sources users at runtime to give feedback about va-
lidity and quality of each executed system alterna-
tive. For example, each of the alternatives of the

gallery-guide system (PDA-based and Staff-supported)
is just a high level description of a system alter-
native. Each of these two alternatives incorporates

a large number of finer-grained functionalities and
variations and context influences as well. To enable
a continuous and open-to-the-crowd feedback, visi-

tors should be asked for and enabled to give their
feedback at runtime. Analyzing and responding to
feedback autonomously at runtime supports a rapid

and efficient system adaptation.



6

5 Modelling Requirements for Social

Adaptation

In this section, we explain the fundamental artefacts
for the requirements models when designing systems
to enact social adaptation. Figure 3 shows a model of

these artefacts and Table 2 gives an example of an in-
stance of this model. It is worth pointing out that this
model is meant to operate on the top of established re-

quirements models which capture the relation between
requirements and quality attributes and system alterna-
tives. It is meant to extend such requirements models by

the social feedback about this relation and the context
influence on it. We will apply that on a main-stream
requirements model, goal model, in Section 5.1.

Requirement System Alternative Quality Attribute

meant to meet

1 1..*

quality refied by

0..*1..*

Validity Influencer

influences ability of

0..*

1..*
in meeting of

1..*

0..*

Quality Inflencer

influences excellence of

0..*

1..*
against
1..*

0..*

Context Attribute

Operation

execution of

1

0..*

Quality FeedbackValidity Feedback

evaluating

10..*

regarding

evaluating

1 0..*

regarding
1

0..*

Fig. 3 Requirements modelling for Social Adaptation

The central part of the model captures the relation
between the requirements and quality attributes from

one side, and the designed system from the other. Re-
quirement is a reification of a human desire to reach
a state of the world. System alternative is a synthesis

between human and automated activities designed to
meet a requirement. A requirement could be reached
via multiple system alternatives. Quality attribute is a

distinguished characteristic of the degree of excellence
of a system alternative. In our framework, these three
artefacts and the relations between them are specified

by the designers at design time and are static and, thus,
are not subject of monitoring at runtime.

Example 1. The statement “visitor can ask for and
get information about any art piece” is a requirement
statement that indicates a visitor’s desire to reach a

certain level of awareness and knowledge about an art
piece in the gallery. To meet this requirement, different
system alternatives can be designed (PDA-based, Staff-

supported). The Staff-supported alternative has techni-
cal and social counterparts. The technical part includes
enabling the visitor to specify a product via RFID tech-

nology, alerting the mentor via his PDA, guiding the
mentor to meet visitor in certain meeting points. The
social part includes that the mentor interacts with the

visitor and explain to him about the art piece. “Vis-

itor’s comfort” while delivering information about an

art piece is a quality attribute against it each of the
system alternatives can be evaluated.

The lower part of the model stands for the context
influence on the relation between the system alterna-
tives from one side and the requirements and quality

attributes from the other. Context attribute is a distin-
guished characteristic of the environment within which
the system operates. Validity influencer is a context at-

tribute that influences the ability of a system alterna-
tive to meet a requirement. Quality influencer is a con-
text attribute that influences the degree of excellence of

a system alternative with respect to a quality attribute.
The context attributes, of both categories, are specified
by designers at design time and monitored at runtime,

i.e. the real values are obtained and stored at runtime.

Example 2. The context attributes “visitor’s age”
and “visitor’s technology expertise level” are validity in-

fluencers which possibly affect the ability of PDA-based
system alternative to enable visitor of querying and
getting information. In other words, these attributes

could influence whether a visitor finds PDA-based sys-
tem alternative a valid means to meet his requirement
of getting information about an art piece. The context

attributes “the estimated time for a mentor to meet vis-
itor”, “the existence of a free seat close to the visitor’s
location” are context attributes that possibly affect the

excellence of Staff-supported system alternative with
respect to the quality attribute “visitor comfort”.

The upper part of the model stands for the social
feedback that reflects the users’ judgment about each
operation of a system alternative. An Operation is a

single execution of a system alternative. Validity feed-
back is a Boolean judgment given by a user concerning
his evaluation whether an operation has led to meet his

requirement. Quality feedback is an assessment, reified
by a numeric value, given by a user concerning his eval-
uation of an operation against a quality attribute. The

social feedback, of both categories, is specified at design
time by designers. The value of the feedback relevant
to a specific system alternative is obtained from users

and stored by the system at runtime after an operation
of that alternative is executed.

Example 3. An operation could start when a user
specifies an art piece via RFID reader plugged in his
PDA. Then the system chooses autonomously (based on

analysing the historical feedback as we explain in Sec-
tion 6) to follow a PDA-based system alternative and
applies it. The correct execution of the functionalities

this alternative incorporates (i.e. bug-free, no failure in
network, etc.) does not mean that the requirement is
reached. The visitor may not complete the interaction

via his PDA or feel unable to interact with it, so the



7

Table 2 Instance of the model presented in Figure 3 and feedback example

Instance of the Model

Requirement R: visitor can ask for and get information about an art piece

System alternatives
S1: PDA-based (input handling, interactive presentation, video, etc.)
S2: Staff-supported (estimating time to meet, notifying mentor, etc.)

Quality Attributes
Q1: visitor is well-informed

Q2: visitor’s comfort

Validity Influencers
C1: visitor’s age and C2: visitor’s technology expertise level, influence the ability S1 to meet R

C3: estimated time for a mentor to meet visitor and C4: visitor has companions? influence the ability S2 to meet R

Quality Influencers

C1, C2, and C5: complexity of art piece information, influence S1 quality vs. Q1

C1, C2, and C6: user’s movement status (moving, standing, sitting), influence S1 quality vs. Q2

C7: mentor’s expertise and C8: mentor’s ability to speak the visitor’s native language, influence S2 quality vs. Q1

C3 and C9: existence of a free seat closed to the visitor’s location, influence S2 quality vs. Q2

Runtime Feedback Example

Operations
Operation1: execution of S1. The values of its relevant context attributes are
C1= >65 years, C2=low, C5: low, C6= standing
Operation2: execution of S2. The values of its relevant context attributes are
C3 = <5 min, C4= alone, C7= medium, C8= fair, C9= no

Validity Feedback
Operation1.Validity feedback= False (R is not reached)
Operation2.Validity feedback= True (R is reached)

Quality Feedback
Operation1.Quality feedback is irrelevant (R was judged unreached)
Operation2.Quality feedback(Q1)= medium
Operation2.Quality feedback(Q2)= high

visitor will give a negative validity feedback. Now, let
us suppose that the system followed a Staff-supported
system alternative. After completing the operation, a

visitor could state that he got the information (the va-
lidity feedback is positive) but it was a bit uncomfort-
able to wait for a mentor and thus the quality attribute
“visitor comfort” could be evaluated to “medium”.

In this work, and to enable the forthcoming anal-
ysis, we presume that the values of both context at-
tributes and the social feedback fall into a designated

enumeration. The analyst should specify for each con-
text attribute a set of values it may be assigned to.
For example, the visitor age values set could be speci-

fied to “<18”, “between 18 and 25”, “between 25 and
65”, “>65”. The validity feedback is already set to a
Boolean value {“requirement is reached”, “requirement

is not reached”}. The quality feedback value has to be
taken from an ordered set of values. The designer may
specify an integer range of values [0..n] where 0 reifies

the user feedback “the system alternative has a very
low quality with respect to the quality attribute q” and
n stands for “the system alternative is excellent with

respect to the quality attribute q”. Alternatively, the
range could be more expressive such as [low, medium,
high] and [bad, acceptable, good, very good, excellent]

to helps users to give feedback in their own terms.

5.1 Goal-driven social adaptation

In this section we discuss the use of goal model, a main-
stream requirements model, for capturing the main arte-
facts of social adaptation (presented in Figure 3). Goal

models (e.g., i* [7], Tropos [8,9], and KAOS [10]) repre-
sent an intentional ontology used at the early require-
ments analysis phase to explain the why of a software

system. Goal modelling is a powerful technique to rep-
resent the rationale of both humans and software sys-
tems providing constructs to analyze their goals achieve

a space of alternatives to satisfy these goals [15]. Such
features are essential for the analysis and the design of
systems adaptive to changes [16,17].

In Figure 4, we show an example of Tropos goal
model [8,9]. It represents a part of our gallery-assistant

running example explained in Section 3. Tropos goal
analysis projects a system as a set of interdependent
actors, each having its own strategic interests (goals).

Actors may depend on each other for goals to achieve,
tasks to execute, or resources to obtain. Goals repre-
sent requirements at the intentional level and are anal-

ysed iteratively, in a top-down way, to identify the more
specific sub-goals needed for satisfying the higher-level
goals. Goals can be ultimately satisfied by means of

executable processes (tasks).



8

Visitor G1: visitor can ask for
and get information

Gallery
Assistant

G1: visitor can ask for and
get information

G2: visitor Identifies
art piece

G3: visitor gets
relevant information

and

T1: location
tracking T2: RFID

reading

G4: staff-
supported G5: PDA-

based

or

T8: video-
based

T9:
interactive

G6: estimate
time

G7: convey
information

T3: explicit
request to
mentor

T4: automatic
estimation

G8: remotely G9: in person

SG2: visitor
comfort

and

T5: presentation-
supported voice chat

T6: voice
chat

G10:mentor knows
how to reach visitor

G11:mentormeets
visitor& explain about

piece

T7: send visitor
picture& location to

mentor
Mentor

SG4: visitorwell-
informed

or

and

SG1: precision

SG1: precision

SG3: quickness

SG1: precision SG2:
comfort

SG4:well-
informed

SG3:
quickness

C1
C1

C2

C2

C3

C6,
C7,
C11

C4,
C5

C6,
C7,
C12

C6,
C7

C8,
C9

C4,
C10

C13

C14

Goal

Task

Actor

Actor
boundary

Softgoal

Means-ends
link

Decomposition
link

Dependency
link

Contribution
link

Legend

Ci

Context
Attributes

Fig. 4 Example of using Goal Model for Social Adaptation

The actor standing for the gallery-assistant system
(Gallery Assistant) has the top-level goal G1= “visitor

can ask for and get information”. Goals are iteratively
decomposed into subgoals by AND-Decomposition (top
goal is achieved when all sub-goals are achieved) and

by OR-Decomposition (top goal is achieved when at
least one sub-goal is achieved). The goal G1 is AND-
Decomposed into G2= “visitor identifies the art piece”

and G3= “visitor gets relevant information”; the goal
G3= is OR-Decomposed into G4= “Staff-supported”
and G5= “PDA-based”. Goals are finally satisfied by

means of executable tasks; the goal G2= “visitor iden-
tifies the art piece” can be reached by one of the tasks
T1= “location tracking” and T2= “RFID reading”. A

dependency indicates that an actor (depender) depends
on another actor (dependee) to attain a goal or to ex-
ecute a task or to get a resource; the actor “Visitor”

depends on the actor “Gallery Assistant” for achieving
the goal G1. The goal model represents multiple alter-
natives that the system may adopt to reach the visitors’

main goal G1. Soft-goals are qualitative objectives for
whose satisfaction there is no clear cut criteria (e.g., vis-
itor comfort). Softgoals can represent quality attributes

upon which the system alternatives for reaching goals
(requirements) are evaluated.

We add to the model context annotations (C1 . . . C14)
which are described in Table 3. As discussed earlier,

context potentially influence the validity and the qual-
ity of system alternatives. For example, C13= “mentor
familiarity with the gallery” possibly influence the va-

lidity of G9=“in person” alternative to reach G7. A
mentor, who is still new, might not be able to reach
the location of visitor on time. C1= “distance between

art pieces” might influence the SG1=“precision” qual-
ity attribute of the RFID reading. That is, if the art
pieces are very close and the visitors are not familiar

with RFID, then a wrong art piece might be identified.
In the following we list two main guidelines for us-

ing goal models to identify social adaptation artefacts

taking examples from Figure 4:

1. Requirements and quality attributes. Requirements
are perceived as goals in goal model. Users of the
system may have different goals they expect the sys-

tem to reach (G1). Each of these goals corresponds
to a set of quality attributes perceived as softgoals
(G1 corresponds to SG1, SG2, SG3, SG4). Each

of the goals delegated to the system actor (Gallery
Assistant) has to be iteratively analysed to reach
tasks (executable processes) which the system can

execute (T1, T2, ..., T9), or goals and tasks the sys-



9

Table 3 Contexts in Tropos model of Figure 4

C1 distance between art pieces
C2 amount the pending activities the mentor has to do

C3 mentor movement status
C4 estimated time for a mentor to meet visitor
C5 visitor has companions?
C6 visitor’s age

C7 visitor’s technology expertise level
C8 mentor’s expertise
C9 mentor’s ability to speak the visitor’s native language

C10 existence of a free seat closed to the visitor’s location
C11 user’s movement status
C12 complexity of art piece information
C13 mentor’s familiarity with gallery

C14 PDA has touch screen?

tem actor can delegate to other actors involved in
the socio-technical system (G11). The result of this

analysis incorporates a space of alternatives to reach
the analysed goals. For example {T1, T3, T7} is a
system alternative to reach G1. The main difference

between traditional modelling of requirements and
modelling requirements for social adaptive systems
is the consideration of uncertainty discussed earlier

in Section 4. In traditional goal modelling, contribu-
tions to softgoals, i.e., the assessments of the quality
of system alternatives, are a priori known at design

time and, moreover, each alternative is presumed
by designers a valid means to reach the analysed
goals. However, this is not always achievable and

designers’ could be uncertain regarding the judg-
ment of validity and quality of each alternative to
reach goals. To deal with such uncertainty, social

adaptation relies on the users’ judgments provided
as feedback after using each alternative in practice.
That is, users become collaborators in the engineer-

ing of the requirements model and certain decisions
are left for users instead of being fully taken by de-
signers.

2. Context influence. As discussed in Section 4, con-
text influences the validity of each system alterna-
tive and its quality assessment against each quality

attribute. Goal model allows for a hierarchical re-
finement of goals to ultimately identify a space of
system alternatives (e.g., {T1, T8}, {T1, T4, T6}).
This makes it easier to discover what context at-
tributes influence the validity and the quality of
those system alternatives in an iterative way as well.

After each refinement in the goal model, the de-
signers can identify the context attributes which in-
fluence the validity of the alternatives emerging at

that refinement stage (C4, C5, and C6, C7, and C13,
and C14) and their quality against the softgoals the
user is concerned with (C4, C10, and C8, C9, and

C6, C7, etc.). The designers have then to specify

an enumeration specifying the values each context

attribute might take. The difference between speci-
fying context in social adaptation and specifying it
in contextual goal models [18] is again the uncer-

tainty of the relevance and the influence of context.
For example C3= “mentor movement” values could
fall in sitting, standing, walking. The relevance of

this context attribute and how each of its values
influences the quality of all system alternatives con-
taining T4 against the softgoal SG1 will be decided

by the users at runtime. The reason is that the un-
certainty of designers about the relevance of this
attribute and about the influence each of its values

has on the quality attribute “precision”.

In Figure 5, we present examples of system alterna-

tives taken from Figure 4 and show their validity and
quality influencers.

Requirements={G1}
Qual i ty At t r ibut e s= {SG1 ,SG2 ,SG3 ,SG4}
Users= { v i s i t o r }

System Al t e rna t i v e s examples :

Example 1 . S1= {T1 , T3 , T7}
Va l i d i t y I n f l u e n c e r s= {C4 , C5 , C13}
Qual i ty I n f l u e n c e r s o f S1

aga in s t SG1={C1 , C2 } ,
a ga in s t SG2={C4 , C10} ,

g a i n s t SG3={C2 } ,
a ga in s t SG4={C8 , C9 } .

Example 2 . S2= {T2 , T9}
Va l i d i t y I n f l u e n c e r s= {C6 , C7 , C14}
Qual i ty I n f l u e n c e r s o f S2

aga in s t SG1={C1 } ,

a ga in s t SG2={C6 , C7 , C11} ,
a ga in s t SG3=∅ ,
a ga in s t SG4={C6 , C7 , C12} .

Fig. 5 Examples of system alternatives taken from Figure 4

6 Social Adaptation Analysis

The main goal of obtaining social feedback is to sup-
port the system decision about the best alternative to

apply for reaching users’ requirements and to overcome
the designers’ uncertainty about this decision. When
the system has to meet a requirement, it has to choose

an alternative to apply. The system has to evaluate the
probability of each alternative of being a valid and a
good-quality means to meet that requirement. We pro-

pose to take into consideration different factors that
together help for a holistic assessment of the validity
and quality of a system alternative. In what following,

we discuss these factors taking examples of Table 2:



10

– Feedback value. This factor stands for the values

the users gave when evaluating the validity and the
quality of each operation of a system alternative.
Users provide the validity feedback upon each op-

eration of a system alternative by giving a Boolean
answer reflecting their judgment whether the opera-
tion led to reach their requirements. Users evaluate

the quality of each operation of a system alterna-
tive against each quality attribute by giving a value
within a designated rank [0..n] where 0 means the

lowest quality and n means the highest. These val-
ues are the basic factor in assessing the validity and
the quality of a system alternative.

– Feedback relevance. This factor stands for the mean-
ingfulness of each of the users’ validity and quality
feedback when assessing a system alternative. This

relevance will be interpreted as a weight for the feed-
back value which reifies the user’ judgment of the
validity and quality of a system alternative. We con-

sider two sub-factors which influence the relevance
of a feedback:

– Feedback context. This factor stands for the match

between the context of a particular operation
of a system alternative for which the feedback
was given and the current context where a deci-

sion about that alternative has to be taken. The
validity of a system alternative and its quality
against each quality attribute are affected by a

set of context influencers as we explained ear-
lier. The more the match between the values of
these context influencers when the feedback was

given and their values at the assessment time,
the more relevant the feedback is. For example,
suppose the system is assessing the validity of

the PDA-based system alternative and that the
current values for its validity influencers are (C1:
visitor’ age) = “> 65”, (C2: visitor’s technology

expertise level) = “low”. Suppose we have two
validity feedback F1= “valid” and F2= “invalid”
and the values of contexts for F1 and F2 are C1=

“>65”, C2= “medium”, C1= “>65”, C2= “low”
respectively. Then the relevance of F2 is higher
than the relevance of F1 because more context

influencers match in F2 than in F1. Thus, and
according to the feedback context factor, the al-
ternative will be judged closer to “invalid” than

“valid”.
– Feedback freshness. This factor stands for the re-

centness of the feedback. Feedback relevance is

proportional to its freshness. That is, the more
recent the feedback is, the more meaningful. There
could be several ways to compute the feedback

freshness. One design decision could compute it

by dividing its sequential number by the over-

all number of feedback of its kind. For example,
suppose that PDA-based system alternative got
two validity feedback, the earlier (with a sequen-

tial number 1) F1= “invalid” and the later (with
a sequential number 2) F2= “valid”. Thus, and
according to the feedback freshness factor, the

alternative will be judged closer to “valid” than
“invalid”.

– User’s preferences. This factor stands for the pref-
erences of the user while assessing the overall qual-
ity of a system alternative. The analysis of the so-

cial feedback results in giving an overall assessment
of each system alternative against each quality at-
tribute. As we mentioned earlier, we take into con-

sideration the feedback value and relevance (con-
text match and freshness factors). However, the as-
sessment of the overall quality, i.e., the aggregated

quality, of a system alternative may consider how
the user appreciates each of these quality attributes.
Similarly to the work in [19], we allow users to ex-

press their preferences by ranking the degree of im-
portance of each of the quality attributes. For exam-
ple, suppose that by analyzing the historical quality

feedback, the PDA-based alternative quality against
Q1= “visitor is well-informed” was assessed to 3 and
against Q2 = “visitor’s comfort” was assessed to 2.

Suppose that the Staff-supported alternative qual-
ity against Q1 was assessed to 2 and against Q2

to 3. If a user appreciates Q1 more than Q2 then

the PDA-based alternative overall quality will be
assessed higher than the overall quality of the Staff-
supported system alternative, and vice versa.

The algorithm Assessing Validity (Figure 6) com-

putes the validity probability of a system alternative
based on the validity feedback users have provided in
the past. It takes as input a system alternative s, the

set of validity influencers C which affect the ability of s
to meet the requirement it is designed to reach and the
actual values of these influencers at the time of assess-

ment C.Values. It gives as output the probability of the
statement “s is a valid means to meet the requirement it
is designed for”. The algorithm identifies first the oper-

ations OP of the system alternative s which got validity
feedback from users (Line 1). If the system alternative
has no validity influencers then the context match fac-

tor is irrelevant and the algorithm returns simply the
proportion of valid operations over the overall number
of operations | OP | multiplied (weighted) by the aver-

age freshness of the operations set OP (Lines 2-3).
When the system alternative has validity influencers,

the algorithm iterates for each possible partial or com-

plete match of the context validity influencers at the



11

Algorithm : Asse s s ing Va l i d i t y
Input : s : System a l t e r n a t i v e

C: {c , c i s a v a l i d i t y i n f l u e n c e r o f s }
C. Values : {( c , v ) , c in C and v = c ’ s monitored value }

Output : a s s e s s ed v a l i d i t y o f ( s , r )

1 . OP:= {o ∈ s . Operations , o got a v a l i d i t y feedback }
2 . I f |C | = 0 then
3 . RETURN Avg Freshness (OP) ∗ ( | { o in OP, o . v a l i d i t y f e e dba c k= ‘ ‘ va l id ’ ’ } | / |OP | )
4 . E l se

5 . r e l e v an t va l i d i t y s um := 0
6 . re levance sum :=0
7 . For i = 1 to |C | Do

8 . OP Ci := ∅
9 . For each Ci | Ci ∈ 2C and | Ci |= i

10 . OP Ci = OP Ci U {o in Op; ExactMatch ( o .Ci . Values , C. Values )}
11 . EndFor

12 . v a l i d i t y Ci := | { o in OP Ci ; o . v a l i d i t y f e e dba c k= ‘ ‘ va l id ’ ’ } | / | OP.Ci |
13 . r e l e v an c e Ci := ( i / |C | + Avg Freshness (OP.Ci ) )/2
14 . r e l e v a n t v a l i d i t y Ci := r e l e v an c e Ci ∗ v a l i d i t y Ci

15 . r e l e v an t va l i d i t y s um := r e l e v an t va l i d i t y s um + r e l e v a n t v a l i d i t y Ci

16 . re levance sum := re levance sum + re l e v an c e Ci

17 . EndFor
18 . RETURN re l e v an t va l i d i t y s um / re levance sum
19 . EndIf

Fig. 6 Assessing Validity Algorithm

feedback time and the assessment time (Lines 7-17). For
each combination of validity influencers Ci with a car-
dinality i, the algorithm identifies the set of operations

OP Ci whose validity influencers values (o.Ci.V alues)
match with the validity influencers values at the assess-
ment time (C.Values) (Lines 9-11). The algorithm then

computes the validity probability concerning the con-
text matches of the cardinality i by dividing the num-
ber of valid operation of Op.Ci by | Op.Ci | (Line 12).

The relevance of this probability is decided by both the
cardinality of context match (i/| C |) and the value of
the freshness factor (Avg Freshness(Op.Ci)), computed

as we explained earlier (Line 13). The algorithm then
multiplies the relevance with the computed validity to
get the relevant (i.e., the weighted) validity (Line14).

The algorithm then (Lines 15-16) accumulates the rel-
evance and the relevant validity into the variables rele-
vant validty sum and relevance sum (initiated at Lines

5-6). After the iteration goes through all partial and
complete context matches, the algorithm gives the over-
all assessment by dividing the relevant validty sum by

the relevance sum (Line 18).

The algorithm Assessing Quality (Figure 7) com-
putes the quality of a system alternative against a qual-
ity attribute based on the quality feedback provided by

users who used that system alternative. It takes as input
a system alternative s and a quality attribute q, the set
of quality influencers C which affect the quality of s with

respect to q and the values of these influencers at the

time of assessment C.values. The rationale of this algo-
rithm is similar to the algorithm Assessing Validity. The
main difference is that the algorithm considers only the

operations where the validity feedback was positive as
negative validity feedback makes any quality feedback
irrelevant (Lines 1). Moreover, the algorithm deals with

the average value of the quality feedback provided for
the alternative s against the quality attribute q (Line 3,
Line 12). As we mentioned earlier, the quality feedback

is represented via a numeric value in an integer range
[0..n] specified by designers where the value is propor-
tional to the satisfaction of users with respect to that

quality attribute.

In Figure 8, we present examples of the user feed-

back concerning the example shown in Table 2 and then
show how both algorithms (Assessing Validity and As-
sessing Quality) process feedback to evaluate the valid-

ity and quality of a system alternative.

Users generally have more than one quality attribute

to evaluate the degree of excellence of a system alterna-
tive. When this happens, the system needs to assess the
overall quality of a system alternative. Our approach is

based on allowing users to express their judgment of
the importance of each quality attribute. This way of
capturing preferences is proposed in [19]. The degree

of importance is an integer in a range [0..n] where 0
represents the user statement “It is not important at
all”, and n represents “it is highly important”. The

overall quality of a system alternative s is thus com-



12

Input : s : System a l t e r n a t i v e
q : Qual i ty a t t r i b u t e o f s

C: {c , c i s a qua l i t y i n f l u e n c e r o f ( s , q )}
C. Values : {( c , v ) , c in C and v = c ’ s monitored value }

Output : a s s e s s ed qua l i t y o f ( s , q )

1 . OP:= {o ∈ s . Operat ions | o . v a l i d i t y f e e dba c k= ‘ ‘ va l id ’ ’ and o got qua l i t y feedback f o r q}
2 . I f |C | = 0 then
3 . RETURN Avg Freshness (OP)∗Avg({ qua l i t y f e edback (o , q ) ; o in Op})
4 . E l se

5 . r e l evan t qua l i t y sum := 0
6 . re levance sum :=0
7 . For i = 1 to |C | Do

8 . OP Ci := ∅
9 . For each Ci | Ci ∈ 2C and | Ci |= i

10 . OP Ci = OP Ci U {o in Op; ExactMatch ( o .Ci . Values , C. Values )}
11 . EndFor

12 . q u a l i t y Ci := Avg{ qua l i t y f e edback (o , q ) ; o in OP.Ci}
13 . r e l e v an c e Ci := ( i / |C | + Avg Freshness (OP.Ci ) )/2
14 . r e l e v a n t q u a l i t y Ci := r e l e v an c e Ci ∗ qua l i t y Ci

15 . r e l e van t qua l i t y sum := re l evan t qua l i t y sum + r e l e v a n t q u a l i t y Ci

16 . re levance sum := re levance sum + re l e v an c e Ci

17 . EndFor
18 . RETURN re l evan t qua l i t y sum / re levance sum
19 . EndIf

Fig. 7 Assessing Quality Algorithm

puted by the following equation, where Q is the set of
quality attributes relevant to the system alternative s,
Assessed Quality(s,q) is the result of applying the al-

gorithm Assessing Quality to evaluate the quality of s
against a quality attribute q, and Importance (q) is the
degree of importance of q to user:

∑
q∈Q Importance(q) ∗AssesedQuality(s, q)∑

q∈Q Importance(q)

Social adaptation relies on the collective judgment
of a community of users. This requires having enough

feedback for each system alternative in order to take
correct social adaptation decisions. To this end, and
when the system is to be initiated, the system designers

might adopt strategies like (i) benefiting from instances
of the same system which operated in similar environ-
ments and analysing their feedback, or (ii) allowing a

trial period in which the system aims to apply all its
alternatives to reach a certain threshold of feedback.
Another question relates to the decision about the al-

ternative to adopt, after assessing the validity and the
overall quality of each alternative. One design option
could divide validity percentage into ranges and con-

sider all alternatives whose validities fall in the same
range equally valid. Then the differentiation between
the equally valid alternatives will be based on the over-

all quality assessment of each alternative. Another de-

sign option could follow a different rationale by deriv-
ing an overall assessment for each alternative reflecting
both validity and quality. Such option could give a cer-

tain weigh to validity and another for quality reflecting
their importance when calculating the overall assess-
ment.

7 Evaluation

In this section we evaluate our approach via a socially-
adaptive messenger system. The system is adaptive in

terms of delivering the message to the receivers using
the best way in each different context. To this end,
the system will gather feedback from messages receivers

and reflect their judgment of the validity and the qual-
ity of each alternative for delivering messages over time.
The evaluation concerns mainly two aspects:

1. Modelling requirements for social adaptation. In which

we report on the observations made upon modelling
the requirements of the messenger system. We have
adopted goal models as a requirement model and the

modelling activity followed the guidelines we have
discussed in Section 5.1.

2. Social adaptation analysis. In which we evaluate the

analysis explained in Section 6. We evaluate whether
the analysis supports the system to choose alterna-
tives which maximize the validity and quality judg-

ments of messages receivers.



13

S2 Staff-supported alternative
S2.Op operations of S2

VF Validity Feedback
VI Validity Influencers
QF Quality Feedback (scale [0,1,2,3,4])

QI Quality Influencers
Q1 visitor is well informed
C3 estimated time for a mentor to meet visitor in minutes { ≤5, >5}
C4 Visitor has companions? {yes, no}
C7 mentor’s expertise {low, medium, high}
C8 mentor’s ability to speak visitor’s language {low, medium, high}
S2.Op VF VI QF(S2,Q1) QI (S1,Q1)

1 False C3: ≤5, C4: no N/A N/A
2 True C3: >5, C4= no 2 C7= medium, C8= high

3 True C3: ≤5, C4= no 4 C7= high, C8= high
4 False C3: >5, C4= no N/A N/A
5 True C3: ≤5, C4= yes 3 C7= high , C8= medium
6 True C3: ≤5, C4= no 1 C7= low, C8= high

7 True C3: >5, C4= no 0 C7= low, C8= medium

Assessing Validity (S2,{C3,C4}, {C3: ≤5, C4:no})
i=1 OP Ci={2,4,5,7}, Valid(OP Ci)={2,5,7}, validity Ci=3/4=0.75

relevance Ci= ((1/2)+ ((2+4+5+7)/4)/7)/2=0.57
relevant validity Ci= 0.57*0.75=0.43

relevant validty sum=0.43, relevance sum= 0.57

i=2 OP Ci={1,3,6}, Valid(OP Ci)={3,6}, validity Ci=2/3=0.67
relevance Ci= ((2/2)+ ((1+3+6)/3)/7)/2=0.74

relevant validity Ci= 0.74*0.67=0.5
relevant validty sum=0.43+0.5=0.93, relevance sum= 0.57+0.74=1.31

RETURN 2.01/1.47 =1.37 (quality scale is [0..4], the quality is 1.47/4 =36.75 %)

Assessing Quality(S2,Q1,{C7,C8}, {C7:low, C8:high})
i=1 OP Ci={2,3,7}, avg quality Ci=(2+4+0)/3=2

relevance Ci= ((1/2)+((2+3+7)/3)/7)/2=0.54
relevant quality Ci= 0.54*2=1.08

relevant quality sum=1.08, relevance sum= 0.54

i=2 OP Ci={6}, avg quality Ci=(1)/1=1
relevance Ci= ((2/2)+((6)/1)/7)/2=0.93

relevant quality Ci= 0.93*1=0.93
relevant quality sum=1.08+0.93=2.01, relevance sum=0.54+0.93

RETURN 2.01/1.47 =1.37 (quality scale is [0..4], the quality is 1.47/4 =36.75 %))

Fig. 8 Example of Assessing Validity and Quality based on Table 2

The messenger system should be provided with al-
ternatives to deliver messages to users (messages re-
ceivers) to enable adaptation. Adaptation is perceived

as the selection between alternatives so that the mes-
sages receivers are satisfied. When designing the sys-
tem, the designers are not certain about the most valid

and the best quality alternative to apply. Thus, the de-
signers will leave the decision to users themselves. To
this end, users will be asked to provide feedback and

the system will analyze this social feedback and choose
upon the best alternative to apply. Mainly, the system
has two strategies to deliver the incoming messages; in-

stant messaging and offline messaging. By instant mes-
saging we mean that the system, upon receiving a new
message, will notify the user and show the message and

enable the user to reply to it. The ways to notify the
user and display the message and reply to it are vari-
ous and each variation could be subject to a different

judgment of validity and quality. By offline messaging
we mean that the system will store the message so that
the user can view it and replay to it in the time he

wants.

7.1 Modelling requirements for social adaptation

To evaluate the modelling part of our framework, we

have organized a lab session and invited 5 researchers
with good expertise in requirements modelling and goal
models. We have explained our design principles of mod-

elling requirements for socially-adaptive systems and



14

guidelines of using goal models, namely Tropos goal

model [8], for such purpose. We then explained the
scenario of the messenger system and asked the par-
ticipants to draw a goal model presenting its require-

ments. The purpose of the session is to find out relevant
concerns and limitations of our proposed framework at
the modeling stage. The session was interactive and we

documented our observations as well as the concerns
the participants have explicitly raised. Figure 9 shows
one of the goal models built during the lab session. We

here summarize the main observations made upon this
experiment:

– Context monitorability. Besides the fact that the

judgement made by users about the validity and
the quality of system alternatives is generally un-
monitorable by automated means, some contexts

could be un-monitorable as well. As a solution, we
may need to enable users of sensing context at-
tributes which are un-monitorable by the use of only

technological devices. For example, C1 which stands
for the context “user is involved in other commu-
nications” is not fully monitorable by automated

means. The user could be having in-person chat with
somebody around or using a communication device
different from the one on which the messenger is

installed. Other context could concern also judge-
ments, not only environment status and events, which
are un-monitorable as well, e.g., “the user is very

interested about the received message”. However,
involving users heavily in monitoring context could
compromise computers transparency [20] which is

the main goal of adaptation. We still need approaches
to guarantee precision when users have to supply
context values and, in the same time, to minimize

the users’ interaction with the system so that the
computing transparency is not highly compromised.

– Quality attributes identification. The designers’ de-

cisions on which quality attributes are relevant and
whether the set of specified attributes are sufficient
to capture all relevant dimensions of system quality

could be uncertain. Moreover, and due to the fuzzy
nature of quality attributes semantic, some design-
ers might find one attribute synonym to, or partial

of, another. For example, there could be more at-
tributes than “less distraction”, “less effort”, “read-
ability” relevant for the quality of each system al-

ternative in the messenger system. Moreover, an at-
tribute like “easy to use” and “comfortable” might
be seen as synonyms for one designer while “com-

fortable” might be seen as part of “easy to use”
for another. As a solution for the inherent difficulty
of reaching a certain decision and consensus about

quality attributes relevance and semantics, we plan

to leave this decision to users themselves. That is,

designers might define an initial set of quality at-
tributes and users might alter as well. The attributes
which survive are the ones users judge often and

consider relevant. In such a way, users are the main
decision makers even in the identification of quality
attributes not only the judgment of the quality of

system alternatives.
– Context influence (un)certainty. The influence of con-

text attributes values on the validity and the quality

of each system alternative is not always uncertain as
we studied in this paper. We presumed that design-
ers define context attributes which have such influ-

ence without being certain about the exact influence
of their values and leave this decision for the anal-
ysis done by the system at runtime as we explained

in Section 6. However, designers could be certain
of the influence of some context values and we do
not need to wait user feedback in order to infer that

influence. For example, for interactive communica-
tion with messages receivers who are using mobile
devices, a context attribute like “touch screen?” in-
fluences the quality of this alternative against the

quality attribute “fast”. Designer might say that
having a touch screen is certainly supportive to this
quality attribute while not having it has a negative

influence and there will be no need to wait for social
feedback to be sure of that. In [18], Ali et al. study
modelling and analysing context influences on the

validity and quality under certainty. We still need
to integrate that work and our current work for a
more holistic treatment of context influence on the

validity and quality of requirements-driven adapta-
tion.

– Evolving the requirements model. In our framework,

designers are involved in taking decisions under un-
certainty and often on subjective basis. Adaptation
has to evolve the model to cope with reality and

overcome uncertainty and subjectivity [14]. The
refinement in the requirements model is an exam-
ple of uncertain design decisions. When we refine

the requirements either by decomposition or spe-
cialization (corresponding to AND-Decomposition
and OR-Decomposition in the goal models respec-

tively), we are just assuming implication relation
stating that reaching all (one of) sub-requirements
will lead to reaching the refined requirement. So-

cial adaptation is the way we presented to validate
such assumptions based on social feedback, i.e., to
evolve the validity and the quality of system alter-

natives over time. We still need to develop more
automated analysis to evolve the model for differ-
ent other reasons. For example, we need the system



15

Handle incoming
messages

Instantmessaging
Offlinemessaging

OR

Notify about new
message Displaymessage

AND

Reply tomessage

Popup alert +
sound alert Sound

alert only

Popup alert
only

C1
C2

C1
C2

C3
C4

C3

C4

Less distraction

C3
C4

C3
C4

Automatic Interactive

OR

Visual
window

Translate text
to sound

User clicks on
messages box

User presses
shortcut
bottons

Voice
message

Typed
message

Message
readability

Less
distraction

C3
C5

C3
C5

C4
C5

C4

Less effort

C4C4

Less effort C4
C4

Messanger
System

Forward to
email

C4 C3

C1= Involved in other communication?

C2= Urgent message?

C3= Listening to audio?

C4= Currently editing?

C5= Long message?

Fig. 9 A Goal Model developed for the Socially-adaptive Messenger

to identify removable alternatives which were shown
extremely invalid (low quality) by users and, more-
over, to identify loci where the model lacks reason-

ably valid and/or acceptable quality alternatives.
On the other hand, specifying how the system will
behave at the initial period of operation to get users’

feedback for all system alternatives is another deci-
sion to be taken under uncertainty in our current
approach. To help for less involvement of designers

and more flexible decision, we need to devise au-
tomated techniques that take this decision at run-
time aiming to balance between the need for fast

adaptation and the need for having feedback for all
alternatives.

– Feedback relevance. In our framework, we do still

do not preprocess users feedback and qualify which
feedback are significant and trustworthy. Several fac-
tors play a role in this decision such as the pattern of

use of the user and the consistency of users feedback.
This, will avoid us noise in the information obtained
via users feedback and elect the ones which really

refelect users’ judgment of systems alternatives.
– Automated support for modelling. When requirements

model gets bigger, error-free modelling becomes harder

to achieve without an automated support. Even in

the small-size model shown in Figure 9, it was not
easy to track context definitions, e.g. a context was
defined twice for the validity/quality of the same al-

ternative. The automated support is also needed to
simulate the system behaviour and deriving alter-
natives so the designers can comprehend the model

better and potentially enhance its quality.

Overall, we still need to enrich our modelling frame-
work in order to minimize the subjective nature of de-
sign decisions, help for consensus between designers when

conflict arises, and increase the automated support for
modelling requirements and evolving the requirements
model. Moreover, we need to devise techniques to in-

volve users in taking more design decisions on voluntary
basis and treat users as collaborators in the engineering
of software rather than consumers of its functionalities.

However, these techniques need to balance between the
extra effort required from users and the desired com-
puters transparency which is the essence of adaptive

systems.



16

7.2 Validating social adaptation analysis

To evaluate the social adaptation analysis proposed in
Section 6, we have asked 15 users to provide validity
and quality feedback about 6 alternatives of a proto-

type messenger in 3 different contexts. For the quality
feedback we have considered 2 quality attributes (Q1:
less distraction, Q2: less effort). Then we have run the

validity and the quality assessment analysis for different
alternatives in different contexts taking as input the set
of obtained feedback. To evaluate the correctness of the

automated analysis, we have surveyed a set of 3 other
users (testing users) and compared their feedback to
the results the automated analysis has reported.

To evaluate the validity assessment analysis, we have

considered 3 alternatives and 3 different contexts where
the validity assessment has given high probability for
validity (>85 %). We have asked the 3 users to provide

their validity feedback (thus 27 feedback were provided
in total) and out of which 23 feedback had the value
“valid” and 4 had the value “invalid”. This shows a

good match between the collective validity judgement
of the 15 initial users, computed by the validity as-
sessment algorithm, and the judgment of each of the

testing users. It is worth pointing out that the con-
sensus of users about the validity is more likely to be
achieved than the quality due to the nature of the deci-

sion about validity which has a clear-cut criteria to be
judged upon.

To evaluate the quality assessment analysis, we have

considered 3 other alternatives and 3 different contexts
and asked the 3 testing users to provide the quality feed-
back of each alternative in each of the contexts against

Q1 and Q2. As a base for comparison, we have ranked
the quality assessment of automated analysis and the
feedback of each user in 2 ways (i) the rank of the dif-

ferent alternatives for each context, and (ii) the rank of
the same alternative in the different contexts.

Table 4, follows the first way of ranking of the auto-
mated analysis assessment and the testing users assess-

ment of the 3 different messenger system alternatives
(A1, A2, A3) against the quality attribute Q1: “Less
Distraction”, in 3 different contexts (C1, C2, C3). The

acronym “Sys” stands for the assessment given by the
algorithm Assess Quality and Ui stand for each test-
ing user. For example, and taking the first data col-

umn, the automated analysis of the users’ feedback to
obtain the quality assessment of A1, A2, and A3 alter-
natives against the quality attribute“less distraction”

within the context C1 indicated that A2 has the best
quality, and A1 has the second and A3 has the low-
est quality. The ranking the automated analysis gave

in this case, matched the ranking made based on the

quality assessment each testing user gave. In the con-

text C2, the user U2 gave a ranking different from the
one given by the automated analysis and we highlight
the mismatching results. The same for U2 and U3 for

the context C3. As shown in the table, the matching
between the collective quality judgment computed by
the quality assessment algorithm and the testing users

feedback was good enough (21 out of 27).
Table 5 follows the second way of ranking. For exam-

ple, taking the first row of data, the automated anal-

ysis gave the alternative A1 quality the best rank in
the context C3, a lower rank in the context C2, and
the lowest rank in the context C1. The users U1 and

U3 matched the system ranking while the user U2 qual-
ity feedback was different as U2 considered A1 quality
the best when operating in C2, and the medium when

operating in C3, and the lowest when operating in C1.
Again, and according to this matching, the collective
quality judgment computed by the algorithm we ex-

plained in Section 6 matched to a good extent the test-
ing users feedback (21 out of 27). For the other quality
attribute Q2= “less effort”, the number os matches be-
tween the automated analysis and the testing users was

also good. It was 18 matches out of 27 comparison fol-
lowing the first way of ranking and 20 matches out of
27 comparison following the second way of ranking.

7.3 Threats to validity

The first threat to validity is the small size scenario we
have used (the messenger system). The size is small

in terms of the number of alternatives to reach the
main requirement which is the handling of incoming
messages (the root goal in goal model of Figure 9) ,

and the number of context influencers and quality at-
tributes as well. This small size scenario helped us to
discover several limitations and concerns at the mod-

elling level and also to evaluate our social adaptation
analysis. However, more complex systems would even
reveal further concerns related to requirements engi-

neering such as elicitation of requirements, viewpoints
and conflicts, model consistency and so on. These chal-
lenges are potentially maximized when dealing with

requirements for social adaptation which incorporates
new elements such as the design uncertainty and the
runtime analysis and the role of user in decision making

at runtime. Moreover, analysing complex models might
raise other challenges related to the computation com-
plexity of the automated analysis (the space of alter-

natives grows exponentially with hierarchies like goal
models). Other problem relates to the feasibility of try-
ing all system alternatives in all context variations and

obtaining feedback within a reasonable time. Our claim



17

Table 4 For each context, the rank of the different alternatives (mismatches are in bold font)

Q1 C1 C2 C3

LD Sys U1 U2 U3 Sys U1 U2 U3 Sys U1 U2 U3

A1 2 2 2 2 2 2 1 2 2 2 2 2
A2 1 1 1 1 1 1 2 1 1 1 3 3
A3 3 3 3 3 3 3 3 3 3 3 1 1

Table 5 For each alternative, the rank in the different contexts (mismatches are in bold font)

Q1 C1 C2 C3
LD Sys U1 U2 U3 Sys U1 U2 U3 Sys U1 U2 U3

A1 3 3 3 3 2 2 1 2 1 1 2 1
A2 3 3 2 3 2 2 3 1 1 1 1 2
A3 3 3 3 3 2 2 2 2 1 1 1 1

that the-openness-to-crowd will help to accelerate this
coverage but our experiment size did not allow us to
validate this claim on large-scale system.

Another threat to validity is the kind of partici-
pants in the lab session made for modelling require-

ments for social adaptation. The participants are aca-
demic researchers who have already good expertise in
requirements engineering and particularly the use of

goal models as a way to identify requirements. That is
to say, we did not need to train the participants and our
framework was easily understood and applied. However,

communicating the principles and guidelines to novice
practitioners might raise other concerns and limitations
related to the understandability and the acceptability

of our framework.

The users who used the prototype messenger system

have committed to give a feedback for each operation.
Moreover, our system generated messages and handled
them via each system alternative and then asked the

users to give their feedback (the exploratory phase of
the experiment). That is, the users were aware of the
purpose of the experiment and committed to collabo-

rate. However, in real world settings, users might refuse
to give feedback or may give incomplete and even in-
consistent feedback which severely influence the appli-
cability and the quality of our social analysis.

The experiment period was short and this fact has
several implications. First, within a short period of time,

the freshness factor does not have a real impact on
assessing the relevance of feedback. We cannot expect
users’ to change their judgement of a system alterna-

tive radically in a week time period especially for the
kind of system we used during the experiment (the mes-
senger system). Moreover, the short experiment period

does not allow us to analyse the system behaviour in a
phase where the trend of users changes, i.e., when the
collective feedback changes largely. When this happens,

the system adaptation might be slower than expected

so that the whole applicability of the system is compro-
mised.

8 Automated Support Tool

We have implemented a tool for specifying goal mod-

els which conform with our metamodel of Fig.3. The
goal of our tool is to support designers in modelling re-
quirements for social adaptation proposed in Sec. 5 and

performing the analysis proposed in Sec. 6.

The metamodel was defined using the Eclipse Mod-
eling Framework (EMF)1, which permits to define meta-

models using the Ecore modeling language. EMF is a
modelling language that is a subset of the Meta-Object
Facility (MOF). MOF is a reflective meta-modeling frame-

work which has three layers and it is a standard of
OMG. The top layer is called M3, in M3 is located
the MOF metamodel, which provides a domain spe-

cific language (concepts and relationships) for defining
other metamodels. MOF is a reflective metamodel, i.e.,
MOF is defined using MOF, therefore MOF is an in-

stance of MOF. All the other metamodels are defined
using a common language which is MOF, and they are
instances of it. These metamodels are located in the

M2 layer, and the instances of the M2 metamodels are
located in M1.

The Ecore concepts and relationships are based on
those found in MOF. In the case of EMF, the top layer

of the reflective tower M3 is located the Ecore meta-
model. The user defined metamodels are instances of
the Ecore metamodel, these models are located in M2,

and the instances of the user metamodel are located
in M1. The user defined metamodels in M2 and their
instance can be defined are defined using generic tree

metamodel and model editors which are part of the
framework. The EMF.Edit framework includes generic
reusable classes for building editors for EMF models.

1 http://eclipse.org/modeling/emf/



18

Fig. 10 A metamodel editor in EMF

Figure 10, presents an example of a metamodel editor
in EMF.

EMF also generates java source code for represent-
ing, persisting and manipulating those models. The EMF.Codegen
code generation framework can generate Java interfaces

and implementation classes for all the classes in the
model, and a factory implementation class. In addi-
tion, the generated metamodel classes are instances of

the Ecore implementation classes, therefore, the source
code is also reflective.

Using the EMF model editor, we can define a goal
model metamodel which is able to represent goal mod-

els with any number of alternatives, quality attributes,
quality influencers, and validity influencers. The goal
model metamodel is an instance of Ecore, therefore it

is located in M2 metamodel.

Figure 11 presents a snapshot of the goal model
metamodel definition editor. In addition, we can ob-
serve some of the concepts that are part of our meta-

model, such as alternative, validity influencer, opera-
tion, etc. Our metamodel representation also includes
feedback classes; therefore a model can contain the feed-

back provided by users of the system.

Using EMF, we generated the model editor of the
goal model metamodel, the model editor allows us to
define specific goal models. In the model editor we can

specify which validity and quality influencers affect a
given alternative. Figure 12 presents an example of a
specific instance of our generic goal model metamodel.

The instances of our goal model metamodel are located
in the M3 layer of EMF.

Using the EMF generated source code, we have im-

plemented our proposed algorithm. This implementa-



19

Fig. 11 A goal model metamodel definition editor

tion can take a goal model and can compute the valid-
ity and quality of the variants according to the provided

user feedback. We have also used our tool for comput-
ing the quality and validity of the models used in the
evaluation of the algorithm.

9 Related Work

Requirements engineering for adaptive systems raises
several challenges [21,22]. These challenges cover a wide

spectrum of topics from coping with uncertainty and
flexibility, the runtime monitoring of requirements and
planning responses to changes, and the traceability from

requirements to architecture and source code. Our pro-
posed approach complements requirement-driven soft-
ware adaptation by the collaboration of users so that

the adaptation is not purely automatic but rather driven

by social feedback. This helps for a more holistic adap-
tation which overcomes the limitation of automated

means to judge if requirements (functional and non-
functional) are being met and moreover allow for re-
flecting social judgment of software behavior rather than

relying on designers’ judgments which could be, or even-
tually become, invalid.

Cheng et al. note that in requirement models un-
certainty have not been explicitly addressed in tradi-

tional requirements engineering [21]. Coping with un-
certainty is an essential feature for adaptive systems
so that the system can switch between different alter-

natives based on the operation of the system in prac-
tice. Qureshi and Perini [23] emphasize on flexibility
of requirements refinement and provide a method that

supports the runtime refinement of requirements arti-



20

Fig. 12 An instance of our goal model metamodel shown in Fig.11

facts as a repetitive activity performed collaboratively

between the users and the application itself.

In their seminal work, Fickas and Feather [16] high-
light the importance of requirements monitoring at run-

time as a basic and essential step for planning and en-
acting evolution. Souza et al. [24] note that the (par-
tial) un-fulfillment of requirements triggers adaptation.

They introduce awareness requirements to refer to suc-
cess, failure, performance and other properties of soft-
ware requirements (i.e. meta-requirements) and pro-

pose to monitor changes in these properties and de-
cide when adaptation should take place. Baresi et al.
[25] propose FLAGS (Fuzzy Live Adaptive Goals for

Self-adaptive systems) for requirements-driven adapta-
tion at runtime. FLAGS extend KAOS [10] mainly with
adaptive goals which incorporate countermeasures for

adaptation. When goals are not achieved by the cur-

rent course of execution, adaptation countermeasures

are triggered. The ultimate target is to alter the goal
model at runtime and enforce adaptation directives on
the running system.

Bencomo et al. [26] advocate that adaptation is plan-
ned either in a pre-defined way at design time or via an

evolvable and reflexive response to some monitored pa-
rameters at runtime. The gap between goals and the
system has to be bridged so that the system adapta-

tion is guided by goals and the adaptation correctness
is judge by the fulfillment of goals (requirements reflec-
tion). In another work related to requirements reflec-

tion, Sawyer et al. [12] discuss that runtime represen-
tation of requirements model, synchronizing the model
with the architecture, dealing with uncertainty, multi-

ple objective decision making, and self-explanation are



21

areas need to be considered in realizing a requirements-

aware system.

In self-adaptation [1,2] and autonomic computing
[27], software can monitor and analyse changes in its
internal and operational environment and plan and exe-

cute an appropriate response. For example, Self-protection
[28] refers to the ability of monitoring and analysing
changes indicating security breaches and intrusions and

planning a set of actions to defend the system or re-
cover from their effects. Besides the research on purely-
automated adaptation, there is an increasing trend to

involve users in the adaptation loop [21] as we advocate
in this paper. As we mentioned earlier, we present so-
cial adaptation to overcome self-adaptation limitations

in monitoring and analysing another driver of adap-
tation which is the users’ evaluation of the role of the
system as a means for reaching the requirements. More-

over, social adaptation relies on the collective feedback
provided by an open community of users so that adap-
tation is accelerated and its feasibility is increased.

Social adaptation is complementary to personaliza-

tion and customizing software to individuals [19,29].
Personalization deals with various aspects of system
design such as the user interfaces [30,31], information
content [32,33], etc. Social adaptation tailors a sys-

tem to the collective judgement of its users’ community
while personalization customizes a system to the char-
acteristics of individuals. That is, social adaptation is

about socializing a system instead of personalizing it.
While socialization clearly does not replace personaliza-
tion, it is essential when the system is highly variable

and the individual users use the system for relatively
limited number of times and the system validity and
quality is subject to frequent changes. In such settings,

customizing software would better aggregate the judg-
ments made by users who used the system in the past
and benefit of that to maximize the satisfactions of the

current users.

Recent research has explored the role of context on
requirements (e.g., [34], [35], [18]) and the elicitation
of contextual requirements [36]. In these works, the re-

lationship between context and requirements are not
evolvable, i.e., there is a certain degree of certainty
when analysing the context influence on requirements.

Such assumption could be valid when dealing with well-
known system scenarios where system relationship with
its environment is predictable at design time. Social

adaptation serves when specifying this relation is un-
certain. It makes it subject to validation and evolution
driven by the users feedback about the quality and the

validity of system different behaviours in different con-
texts.

10 Conclusions and Future Work

Adaptation is increasingly becoming a critical demand
so that validity and quality of software is maintained

over time. It avoids us altering the system manually in
order to cope with changes in its internal state and its
operational environment. We advocated social feedback

as a main and primitive driver for adaptation. Social
feedback mainly concerns the validity and quality of
each system alternative with respect to meeting users’

requirements. Social feedback is provided by users who
are considered first-class evaluators of the systems. Such
feedback is essential as it cannot be replaced by or in-

ferred from information monitorable by purely auto-
mated means. Social adaptation is the ability of soft-
ware to obtain and analyze social feedback in order to
plan adaptation. Adaptation is understood as the se-

lection between different system alternatives to reflect
users’ feedback. Thus, we enrich software engineering
for adaptive systems with a systematic approach for

capturing another adaptation driver (users’ feedback)
and involving users as collaborators in planning and
guiding adaptation.

The crux of social adaptation is the use of the col-
lective feedback which stands on the other side of per-
sonalizing software to each user separately based on his

interaction history and feedback. Our inspiring princi-
ple is the wisdom-of-crowds [37] which is particularly
important when designing systems for an open com-

munity of users (e.g., tour-guide for tourists in a city,
assistant-system for new students in a university, online
auction systems for sellers and buyers over the world,

etc.) rather than pre-determined community of users
(e.g., payroll system or a meeting scheduled for already
known or rarely changing set of users in a single organi-

zation). However, some systems are hybrid and incorpo-
rate both closed and open communities (e.g., a library
system with predefined managers and officers and an

open community of students). Social adaptation allows
for accelerating adaptation by relying on peer users’
previous judgment of the validity and the quality of

each system alternatives.
This paper aimed to present foundations and a set of

techniques for planning and enacting social adaptation.

However, our research in this area is open to multiple
directions such as:

– Equilibrating multiple roles of users. We studied so-
cial adaptation which considers only one kind of
users. A system alternative might interact with dif-

ferent users each playing different role in the system.
Users of one role might provide validity and qual-
ity feedback of a system alternative differently from

users of another role. Consequently, the adaptation



22

has to equilibrate diversity of roles being played in

the system. For example, the messenger system can
also take the feedback from users who are sending
the message and adapt by choosing the way to de-

liver messages which also considers the sender feed-
back.

– Increasing openness-to-crowd. We studied the in-

volvement of users in judging the validity of systems
alternatives and their quality against a pre-defined
set of quality attributes. However, designers might

not be even certain of what quality attributes are
relevant to users and if the defined set is complete.
As a solution, users might be given the possibility

to manage collaboratively the definition and the as-
sessment of their own quality attributes. For exam-
ple, in a gallery-assistant system a user might put

an attribute such as “less noise”, and other users
might contribute to judge each system alternative
against it. That is to say, social adaptation can be

established in a way more open to users so that the
role of designers is minimized and users are given
more liberty in planning and enacting adaptation.

– Multi-criteria decision making. We studied the adap-

tation that takes only one adaptation driver which
is the social feedback. However, multiple other cri-
teria play role in the selection between system alter-

natives and, thus, adaptation. For example, the con-
text in which the system operates, the law enacted
in the system environment, the resources available

in it are examples of criteria which restrict the space
of applicable alternatives of the system and influ-
ence their qualities. We still need to merge between

these different criteria and social feedback in order
to achieve a more holistic system adaptation.

Acknowledgement

This work has been partially funded by the EU Com-
mission through the FastFix project, and by Science

Foundation Ireland grant 10/CE/I1855. We also thank
Haruhiko Kaiya for discussions that enriched the ideas
of this paper.

References

1. R. Laddaga. Self-adaptive software. Technical Report 98-12,
DARPA BAA, 1997.

2. Mazeiar Salehie and Ladan Tahvildari. Self-adaptive soft-
ware: Landscape and research challenges. ACM Transac-
tions on Autonomous and Adaptive Systems, 4:14:1–14:42,

May 2009.
3. R. Murch. Autonomic computing. IBM Press, 2004.
4. Raian Ali, Carlos Solis, Mazeiar Salehie, Inah Omoronyia,

Bashar Nuseibeh, and Walid Maalej. Social sensing: When

users become monitors. In the proceedings of the New Ideas
Track of the joint meeting of the European Software Engi-

neering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE’11).,
2011.

5. Joseph S. Dumas and Janice C. Redish. A Practical Guide

to Usability Testing. Intellect Books, Exeter, UK, UK, 1st
edition, 1999.

6. Karel Vredenberg, Scott Isensee, and Carol Righi. User-
Centered Design: An Integrated Approach with Cdrom. Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 2001.

7. E. Yu. Modelling Strategic Relationships for Process Reengi-
neering. PhD thesis, Department of Computer Science, Uni-
versity of Toronto, Toronto, Canada, 1995.

8. Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto
Giunchiglia, and John Mylopoulos. Tropos: An agent-

oriented software development methodology. Autonomous
Agents and Multi-Agent Systems, 8(3):203–236, 2004.

9. Jaelson Castro, Manuel Kolp, and John Mylopoulos. To-
wards requirements-driven information systems engineering:

the tropos project. Information Systems, 27(6):365–389,
2002.

10. Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas.
Goal-directed requirements acquisition. Science of Computer
Programming, 20(1-2):3–50, 1993.

11. Walid Maalej, Hans-Jörg Happel, and Asarnusch Rashid.
When users become collaborators: towards continuous and
context-aware user input. In Proceeding of the 24th ACM
SIGPLAN conference companion on Object oriented pro-

gramming systems languages and applications, OOPSLA ’09,
pages 981–990. ACM, 2009.

12. Pete Sawyer, Nelly Bencomo, Jon Whittle, Emmanuel Letier,
and Anthony Finkelstein. Requirements-aware systems: A
research agenda for re for self-adaptive systems. In Pro-

ceedings of the 2010 18th IEEE International Requirements
Engineering Conference, RE ’10, pages 95–103, Washington,
DC, USA, 2010. IEEE Computer Society.

13. Anthony Finkelstein Andrea and Andrea Savigni. A frame-

work for requirements engineering for context-aware services.
In Proceedings of the 1st International Workshop From Soft-
ware Requirements to Architectures, pages 200–1, 2001.

14. Raian Ali, Fabiano Dalpiaz, Paolo Giorgini, and Vitor
E. Silva Souza. Requirements evolution: from assumptions

to reality. 2011.
15. John Mylopoulos, Lawrence Chung, and Eric Yu. From

object-oriented to goal-oriented requirements analysis. Com-
munications of the ACM, 42:31–37, January 1999.

16. S. Fickas and M. S. Feather. Requirements monitoring in

dynamic environments. In Proceedings of the Second IEEE
International Symposium on Requirements Engineering, RE
’95, Washington, DC, USA, 1995. IEEE Computer Society.

17. Daniel Sykes, William Heaven, Jeff Magee, and Jeff Kramer.

From goals to components: a combined approach to self-
management. In Proceedings of the 2008 international work-
shop on Software engineering for adaptive and self-managing
systems, SEAMS ’08, pages 1–8, New York, NY, USA, 2008.

ACM.
18. Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. A goal-

based framework for contextual requirements modeling and
analysis. Requir. Eng., 15:439–458, November 2010.

19. Bowen Hui, Sotirios Liaskos, and John Mylopoulos. Re-

quirements analysis for customizable software goals-skills-
preferences framework. In Proceedings of the 11th IEEE In-
ternational Conference on Requirements Engineering. IEEE
Computer Society, 2003.

20. Mark Weiser. The computer for the 21st century. SIGMO-

BILE Mob. Comput. Commun. Rev., 3:3–11, July 1999.



23

21. Betty H. C. Cheng, Holger Giese, Paola Inverardi, Jeff
Magee, and Rogério de Lemos. Software engineering for self-

adaptive systems: A research road map. In Software Engi-
neering for Self-Adaptive Systems, pages 1–26, 2008.

22. Betty H. C. Cheng and Joanne M. Atlee. Research directions

in requirements engineering. In 2007 Future of Software En-
gineering, FOSE ’07, pages 285–303, Washington, DC, USA,
2007. IEEE Computer Society.

23. Nauman A. Qureshi and Anna Perini. Requirements engi-

neering for adaptive service based applications. In Proceed-
ings of the 2010 18th IEEE International Requirements En-
gineering Conference, RE ’10, pages 108–111, Washington,

DC, USA, 2010. IEEE Computer Society.
24. Vı́tor E. Silva Souza, Alexei Lapouchnian, William N. Robin-

son, and John Mylopoulos. Awareness requirements for
adaptive systems. In Proceeding of the 6th international

symposium on Software engineering for adaptive and self-
managing systems, SEAMS ’11, pages 60–69, New York, NY,
USA, 2011. ACM.

25. Luciano Baresi, Liliana Pasquale, and Paola Spoletini. Fuzzy
goals for requirements-driven adaptation. In Proceedings of
the 2010 18th IEEE International Requirements Engineering
Conference, RE ’10, pages 125–134, Washington, DC, USA,

2010. IEEE Computer Society.
26. Nelly Bencomo, Jon Whittle, Pete Sawyer, Anthony Finkel-

stein, and Emmanuel Letier. Requirements reflection: re-
quirements as runtime entities. In Proceedings of the 32nd

ACM/IEEE International Conference on Software Engi-
neering - Volume 2, ICSE ’10, pages 199–202, New York,
NY, USA, 2010. ACM.

27. Simon Dobson, Spyros Denazis, Antonio Fernández, Do-
minique Gäıti, Erol Gelenbe, Fabio Massacci, Paddy Nixon,
Fabrice Saffre, Nikita Schmidt, and Franco Zambonelli. A
survey of autonomic communications. ACM Trans. Auton.

Adapt. Syst., 1:223–259, December 2006.
28. Peyman Kabiri and Ali A. Ghorbani. Research on intrusion

detection and response: A survey. International Journal of

Network Security, 1:84–102, 2005.
29. Odd-Wiking Rahlff, Rolf Kenneth Rolfsen, and Jo Herstad.

Using personal traces in context space: Towards context trace
technology. Personal Ubiquitous Comput., 5:50–53, January

2001.
30. Daniel S. Weld, Corin Anderson, Pedro Domingos, Oren Et-

zioni, Krzysztof Gajos, Tessa Lau, and Steve Wolf. Automat-

ically personalizing user interfaces. In International Joint
Conference on Artificial Intelligence, pages 1613–1619, 2003.

31. Silvia Schiaffino and Anaĺıa Amandi. User - interface agent
interaction: personalization issues. Int. J. Hum.-Comput.

Stud., 60:129–148, January 2004.
32. Jaime Teevan, Susan T. Dumais, and Eric Horvitz. Person-

alizing search via automated analysis of interests and activ-
ities. In Proceedings of the 28th annual international ACM

SIGIR conference on Research and development in infor-
mation retrieval, SIGIR ’05, pages 449–456, New York, NY,
USA, 2005. ACM.

33. Paul Alexandru Chirita, Wolfgang Nejdl, Raluca Paiu, and
Christian Kohlschütter. Using odp metadata to personal-
ize search. In Proceedings of the 28th annual international
ACM SIGIR conference on Research and development in in-

formation retrieval, SIGIR ’05, pages 178–185, New York,
NY, USA, 2005. ACM.

34. Mohammed Salifu, Yijun Yu, and Bashar Nuseibeh. Spec-

ifying monitoring and switching problems in context. Re-
quirements Engineering, IEEE International Conference on,
0:211–220, 2007.

35. Herman Hartmann and Tim Trew. Using feature diagrams

with context variability to model multiple product lines for

software supply chains. In Proceedings of the 2008 12th In-
ternational Software Product Line Conference, pages 12–21,

Washington, DC, USA, 2008. IEEE Computer Society.
36. Norbert Seyff, Florian Graf, Neil A. M. Maiden, and Paul

Grünbacher. Scenarios in the wild: Experiences with a con-

textual requirements discovery method. In Requirements En-
gineering: Foundation for Software Quality, volume 5512 of
Lecture Notes in Computer Science, pages 147–161. Springer,
2009.

37. James Surowiecki. The Wisdom of Crowds. Anchor, 2005.


	2011-TR-05
	Social_Adaptation

