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Abstract

Clone refactoring is a source code transformation activity that can
be used to remove code duplicates while preserving original behaviour/-
functionality. For example, refactoring of three features in our industrial
partner’s product family allowed us to preserve functionality, reduce the
code footprint and improve the time domain analysis module’s perfor-
mance for some of their systems. But the effort expended in this activity
also indicated the need for refactoring semi-/automation. In this report,
one existing literature review and a subsequent literature search (to probe
for new work) were used to identify the state-of-the-art in clone refac-
toring techniques. Fifteen such papers were found, characterized, and
reviewed in detail, highlighting their advantages. Additionally, previous
refactorings we employed at our industrial partner’s were described and
empirically evaluated.

The review of existing clone refactoring techniques suggests that they
can semi-/automatically refactor certain clones. Yet, they cannot ac-
count for all clone differences and higher levels of automation can re-
sult in reduced quality of refactored code (through boilerplate/redundant
code). Likewise, code refactoring of three features from our industrial
partner’s product family suggests that some refactorings can be auto-
mated, whilst preserving code quality, whereas the other, such as “super-
functionality”, can require complex rules/developer’s knowledge. Hence, a
semi-automation approach is proposed for discussion, which includes both
a heuristic-based part for the refactorings that can be automated, while
preserving code quality, and an artificial neural-network based model to
learn refactorings for more complex code differences and their transfor-
mations.



Abbreviations

ANN ............ Artificial neural network
AP .............. Add parameter

AST ............. Abstract syntax tree

CAF ............. Common analysis framework
CC .............. Clone class

CDT ............ Clone detection technique
CFG ............. Control flow graph

CP .............. Clone pair

CR .............. Clone refactoring

CRT ............. Clone refactoring technique
CS ... Code smell

EM .............. Extract method

FTM ............ Form template method

GS ... Google Scholar

KLOC ........... Thousand(s) of LOC

LOC ............. Line(s) of code

ooP ............ Object oriented programming
PDG ............ Program dependence graph
PM .............. Parameterize method
PUM ............ Pull up method

RA .............. Refactoring activity

RS ... Reorder statements

SF ............... Super functionality



1 Introduction

Refactoring! is a transformation of source code that preserves the original be-
haviour /functionality of that code [28]. The goal of refactoring is to improve
the software quality as part of software maintenance and evolution and/or a
software re-engineering process [22]. Certain refactoring activities (RA) can be
distinguished as part of refactoring process such as identification, scheduling,
application, and others [22]. In this report, the expressions “refactoring” and
“refactoring application activity” are used interchangeably and carry the same
meaning (actual transformation of source code, while preserving behaviour),
unless explicitly stated otherwise.

The primary targets for refactoring are certain degraded structures [2,4,17,
27] in source code (that can indicate the possibility for refactoring), usually
referred to as code smells (CS) [13]. Fowler et al. described 22 such classes of
CSs [13]. A code clone (further “clone”) is one of these CS classes. Here, clones
are pieces of code, identical to each other up to a certain degree [16].

The software product family of our industrial partner was initially created
in an clone-and-own manner? and, as a result, common functionality was du-
plicated across the software systems, creating feature clones. Currently, the
adopted re-engineering strategy for this product family includes identification
of common functionality (locating features in SystemA and their clones in Sys-
temB and SystemC) and subsequent refactoring of these clones towards a com-
mon code base. Manual refactoring of three features has allowed us to signifi-
cantly reduce the code footprint and to improve the module-related performance
for some systems in the product family. It has also streamlined the company’s
maintenance process somewhat, where one piece of code can now be maintained
instead of three. It has emerged, however, that such clone refactoring (CR)
requires substantial effort and it was decided to consult the existing research
literature for semi-/automation approaches to refactoring.

The goal of this report is to review the state-of-the-art in clone refactor-
ing techniques (CRT) (semi-/automated approaches to CR) and to recommend
those that could work for our industrial partner’s product family based on previ-
ous refactoring work. Particularly, this report focuses on CRT's that can refactor
Type III clones (clones that have lines of code added, removed, or modified be-
yond variable renaming and type/literal change), as it was found that this type
of clones is prevalent in the product family [6]. For this purpose, one existing
literature review was analyzed and an additional search and review of existing
work in CR was conducted, to identify more recent, relevant literature.

This report is structured as follows: Section 2 describes the literature review
process, and Section 3 discusses existing CRTs in detail. Section 4 revisits

IThe term “refactoring” was originally used in the context of object oriented programming
(OOP), whereas the term “restructuring” was used in the literature to define similar activi-
ties in code written using other non-OOP languages [1]: in this report both terms are used
interchangeably.

2The development branch of SystemA was forked to produce the other two systems: Sys-
temB and SystemC.



the refactoring that was performed in our industrial partner’s product family,
and Section 5 concludes this report with a refactoring proposal, for discussion
amongst the project team.

2 Literature Review Process

The literature review process for this report was organized as follows:

e An existing literature review on CR by Mondal et al. [23] was consulted
and papers describing Type III CRTs were selected, from that review, for
this report.

e An additional literature search was conducted (looking for literature going
to August 2019 inclusively) to ensure no important literature is missing
that describes Type III CRTs.

e The papers selected from Mondal et al. [23] and from the literature search
were joined, duplicates removed, and the final list of literature was ob-
tained, by looking for other papers on Type III CRTSs, using backward
and forward references of those papers already selected.

2.1 Identification of CRTs from an Existing Literature Re-
view

Although the field of refactoring appears to be widely studied, to the best of
our knowledge there is only one existing literature review that focuses, in part,
on CR application activity [23]. Mondal et al. have conducted a survey to
review existing literature in CR and clone tracking. They have reviewed papers
starting from 1998 and going to 2017 inclusively, searching for those papers in
seven well-known digital databases®. The authors ultimately selected 77 papers
that in their opinion are relevant to CR.

As part of their review, Mondal et al. have identified three papers that de-
scribe approaches suitable for Type III CR [23]. However, a review of the other
literature they selected suggested that there are other (Type III CR relevant)
approaches considered. Mondal et al. [23] have discussed these potentially rel-
evant papers in the following sections of their paper: “Automatic Refactoring
of Code Clones”, “Integrating Clone Detection and Refactoring”, and “Semi-
automatic Refactoring of Code Clones”. Therefore, the papers discussed by
Mondal et al. [23] in these sections were reviewed and those that satisfy both of
the criteria below were selected:

e Papers that explicitly discuss techniques or tools that facilitate the appli-
cation of RA.

3IEEExplore, ACM Digital Library, ScienceDirect, SpringerLink, Wiley Online Library,
World Scientific, and The IET




e Papers that explicitly mention applicability of their techniques or tools
4

towards either Type IIT or “near-miss” clones®.
Following the selection process above, seven papers were selected for review.
Therefore, after this step 10 papers were identified in total: three as explicitly
mentioned by Mondal et al. [23] and the other seven as a result of implicit
mention by Mondal et al.

2.2 Identification of CRTs from a Literature Search

Mondal et al. covered 77 CR related papers in their review [23]. However, the
degree to which it covered the CR literature is open to question because:

e The review does not seem to follow a systematic literature review approach
[23].

e The review covers papers going to 2017 inclusively: newer, relevant re-
search may now be available.

For these reasons, it was decided to conduct an additional systematic litera-
ture search and review to see if there is any potentially important work missing
using the following procedure:

e Google Scholar® (GS) search engine was used to search for relevant lit-
erature. The search engine allows for simultaneously searching multiple
digital libraries (including those analyzed by Mondal et al. [23]).

e The following search strings were used to search with GS: “clone refactor-
ing”, “duplicate code refactoring”, “clone restructuring”, and “duplicate
code restructuring”.

e The time period had an open start date and would include all papers going
to August 2019 inclusively.

o It was decided to rank the returned results “by relevance” (GS does not
specify explicitly how “relevance” is calculated).

Because the resultant list is very large (over several thousands of entries
returned) the following inclusion criteria were used for selection process:

e The paper had to describe an approach, a technique, or a tool for CR and
it had to be explicitly directed towards source code.

e The paper had to be published in a peer-reviewed venue.

e The paper had not been previously analyzed in Section 2.1.

4Near-miss clones can refer to Type II and/or Type III clones combined. Therefore, when
selecting the papers it was checked if particular authors investigate Type III clones as part of
near-miss clones.

Shttps://scholar.google.com



The selection process was stopped after hitting ten consecutive irrelevant
(not satisfying inclusion criteria) papers. As a result, 21 papers were found and
selection criteria used previously in Section 2.1 (focusing on application RA and
Type III clones) were applied. As a result, two matching papers were selected
for detailed review.

2.3 Using Already Identified Papers to Find Relevant Lit-
erature

The 12 previously identified papers (10 from Section 2.1 and 2 from Section 2.2)
were used as starting points to further search for potentially relevant literature
using backward and forward citation references. Particularly:

e For backward citations: “Related work” or similar sections of these 12
papers were used to identify potentially relevant work.

e For forward citations: GS “Cited by” functionality was used to find the
relevant work that cited each of these 12 CR papers.

The selection criteria, discussed in Section 2.1 (application RA and Type III
clones), were applied when choosing the relevant literature. This process was
applied iteratively to all newly found papers until no more relevant literature
was found. As a result, three additional papers were selected. Therefore, after
following the procedures in Section 2.1, Section 2.2, and in this section, 15
relevant papers, in total, were selected for detailed review.

3 Detailed Review of Type III CRTs
3.1 Characterization of Type III CRTs

For better illustration and comparison, the CRTs discussed in the 15 reviewed
papers were characterized using attributes adopted and/or adapted from ex-
isting clone detection/refactoring reviews [23,29]. Also, to characterize eval-
uation of these CRTSs, attributes from existing feature location reviews were
adopted [7]°. Additionally, three attributes (not encountered in the literature
characterizing clone detection techniques (CDT) or CRTs) were added: “Type”,
“Refactorings”, and “Results”. The “Type” attribute was added, because dur-
ing the review process, existence of two methodologically different groups of
CRTs was found: recommender systems and heuristics-based semi-/automated
CRTs. The “Refactorings” attribute was used to allow for better illustration
of common code transformations supported by a technique. The “Results” at-
tribute was used to highlight how a technique compares to other CRTs, the
effectiveness of a technique in terms of its runtime performance, and the ev-
idence of how CR performed using the technique: aspects important for this

6 Although feature location approaches are different from CRTs, evaluation attributes used
in that review seem to be generally applicable to CRTSs’ evaluation



Table 1: Refactorings frequently encountered in reviewed approaches

Refactoring

Described in Description

Extract Method (EM)

3] Extract sets of (common) statements
and place those in a separate method

Parameterize Method (PM)

3] Merge similar methods introducing
a parameter(s) for varying values

Form Template Method (FTM)

Merge similar methods (usually creating
a method in a superclass) moving

[13] varying parts to external methods (having
the same signature and usually placed in

subclasses).

Pull Up Method (PUM)

Remove similar methods from
(13] .
subclasses and merge these in a superclass

Add Parameter (AP)

3] Add parameter to a method: can be
used to control execution of varying parts

Reorder Statements (RS)

Reorder statements in a block of code
[18] (usually to obtain a contiguous piece of

common statements)

Table 2: Source code representations frequently encountered in reviewed ap-

proaches

Representation

Description

Abstract syntax tree (AST)

A tree that represents source code’s syntactic structure.

Some details, like end of line delimiters can be omitted.

Control flow graph (CFG)

A directed graph, where nodes are basic blocks (linear
sequence of statements, for example) and where edges

represent control flow between these blocks.

A directed graph, where nodes are usually statements or

Program dependence graph (PDG) | expressions and where edges represent either

data or control flow dependencies.

report. The full list of all attributes, their abbreviations, and their possible

values is presented below:

e Type (T): shows the type of a CRT. The value is a binary choice between
“recommender” (R) CRTs and “semi-/automated” (SA) CRTs.

e Refactorings: shows the types of source code transformations that a tech-
nique can produce. Table 1 shows refactorings frequently encountered in
reviewed approaches, references work where these refactorings were first
described, and provides short descriptions. For refactoring values not
listed in the table, “Other” value is used.

o Supported language(s) (Sup.L): shows programming languages that are



supported by a technique. The values come from the set of existing pro-
gramming languages.

e Code representation (C.Rep): shows how source code is represented inter-
nally by a technique. Common representation values include an abstract
syntax tree (AST), a control flow graph (CFG), or a program dependency
graph (PDG) (see Table 2 for descriptions). For code representations not
listed in the table the value “Other” is used.

e Clone granularity (Cl.Gr): shows the clone granularity supported by a
technique. The values come from a finite set: block (B), method (M),
function (F), or class (C).

e Clone set size (CI.SS): shows the number of similar clones in a group that
a technique can process. The value is binary: either a clone class (CC)
or a clone pair (CP). A CC is a set of similar clones, whereas a CP is a
special instance of a CC: a pair.

e Tool/source availability (Avail): shows if a tool or the source code (from
which the tool can be built) is available for a technique. Flag “Y” is used
to indicate availability.

e Subject systems: shows software systems to which a CRT was applied
and/or which were used to evaluate that CRT. It has four sub-attributes:

— Licensing (Les): shows the type of license. Three possible values are:
proprietary (P), open source software (OSS), or “Mixed”.

— Number of Systems (#): shows how many systems were used.

— Size: shows the size of a system(s) in thousand(s) of LOC (KLOC).
In case multiple systems were used, the size is shown as a range: the
size of the smallest system followed by the size of the largest system.

— Number of Clones (#C): shows the number of clone groups (either
CPs or CCs) extracted from subject systems to which a technique
was applied and/or which were used for evaluation. The values are
“S” for a number of clone groups with a range of [1, 100], “M” for
clone groups from a range of [101, 1,000], “L” for clone groups from
a range of [1,001, 100,000], and “L+” for numbers above 100,000.

e Fwaluation: describes how a technique was applied/evaluated. It has six
sub-attributes (for each of these flag “Y” indicates truth):

— Comparison (Cmp): shows if a technique was compared to other
existing approaches.

— Academic evaluation (A): indicates if a technique was evaluated/ap-
plied by academic participants.

— Professional evaluation (P): indicates if a technique was evaluat-
ed/applied by industry professionals (e.g. developers).



— Quantitative evaluation (Qn): indicates if metrics/statistical data
was used to evaluate and describe a technique.

— Qualitative evaluation (Ql): indicates if qualitative aspects were eval-
uated.

— Performance (P): explicitly indicates if a technique’s performance
was measured as part of quantitative evaluation.

e Results: describes the results of the evaluation/application of a technique.
It has three sub-attributes:

— Improved effectiveness (E+): shows in percentage terms how much
the CR effectiveness of a technique improves as compared to other
technique in evaluation (the values are percentages).

— Code refactored (C.R): indicates (using a “Y” flag) if source code was
refactored as part of the evaluation.

— Performance (Perf.): shows the performance of a technique. The
values here are free form notes in which “min.” stands for minutes
and “sec.” for seconds.

Because of high dimensionality, the characterization of CRTs is split between
two tables. Table 3 contains attributes up to and including “Tool/source avail-
ability” in the order listed above and focuses on CRTs. Table 4 contains the
remaining attributes in the above order and focuses on the evaluation of CRTs.
In each table, papers were grouped by the CRT they describe: this improves
readability and analysis, as some papers only differ in evaluation and some don’t
have substantial differences (for example, see “Narasimhan” in both tables: the
papers describing this approach are grouped together). In both tables, the first
“Technique” column refers to a CRT either by the name of a CRT (italic) or if
there is no name then by the name of the first author (bold) of the paper where
it was first described. The CRTSs are ordered by the time they first appeared
in the literature. For every technique, a set of papers is provided in the second
column “Paper ref.”: again these papers are ordered by the time they appear in
the literature. For example, in Table 3, JDeodorant is the name of a technique
described in four related papers [20,21,31,32]: these are grouped together and
ordered by the time of appearance. For any attributes for which values are not
available,a blank field is used.

3.2 Recommender CRTs

Recommender CRTs (see Type (T) “R” in Table 3 and Table 4) can analyse
structural relationships between clones and based on that can suggest an ap-
propriate refactoring. For example, a recommender CRT can identify that two
method clones belong to two subclasses (extended from a common superclass)
and then suggest a PUM refactoring.

Koni-N’Sapu proposed SUPREMO, a technique that supports CR with the
help of textual and visual aids [19]. SUPREMO defines a set of scenarios



Table 3: Characterization of Type III CRTs reviewed in this report

P
Technique a;per T Refactorings Sup.L C.Rep ClL.Gr CLSS Avail
rel.
Fanta (11] SA Other C++ Other F/C CcC
Ct+,
EM, PM, FTM, Ada,
SUPREMO | [19] R ' ' a Other B/M  CC
PUM, Other Java,
Smalltalk
LIME (33] SA EM, PUM AST B/M  CC
Gorg [14] SA FTM AST M cC
SPAPE (3] SA  EM, PM, RS C AST/PDG B cp
tended
[20] SA  EM, PM, RS Java extende B/M  CP Y
PDC
JDeodorant tended
31] SA  EM, PM, RS Java extende B/M  CP Y
PDG
xtended
[21] SA  EM, PM, RS Java extende B/M  CP Y
PDG
tended
32)  SA EM,PM RS, FTM Java erende B/M CP Y
PDC
Narasimhan | [24-26] SA EM, PM, AP C++ AST M CcC Y
DCRA 12] R EM, FTM, Other  Java B/M  CP
Ettinger 9,100 SA EM, RS Java CFG/PDG B CP Y

Table 4: Evaluation of Type III CRTs reviewed in this report

) Paper Subject systems Evaluation Results
Technique
ref. Lcs # Size #C Cmp A P Qn Ql Pr E4+ C.R Perf.
Fanta [11] P 1 120 L Y Y
SUPREMO [19] Mixed 9  2-300 Y Y Y Y
LIME [33]
Gorg [14]
. 3 min.
SPAPE 3] Oss 10 1767 M Y Y Y Y 110%
max
[20] 0SS 7 50-120 M Y Y Y 83%
1sec.
JDeodorant <hsee
[31] 0SS 9 50-210 L+ Y Y Y Y  for 98%
cases
21]
[32] 0SS 9 50-210 L Y Y Y
Narasimhan | [24-26] 0SS 10 S Y Y Y
DCRA [12] 0SS 4 M Y Y
Ettinger [9,10] 0ss 4 M Y

where each scenario describes certain structural relationships between clones
at method and block level granularity. For each such scenario a set of refactor-
ings is suggested (where refactorings are those proposed by Fowler et al. [13]).
For example, given a scenario “in the same class” where two methods within a

10



class contain duplicated code the following refactorings can be suggested: EM,
“Insert Method Call”, PM, and/or FTM". The textual editor in SUPREMO
allows for pairwise comparison of clones and displays additional statistics for
these clones such as suggested refactoring(s), number of matching lines, density
of these matching lines, and the number of similar clones within a given CC.
Internally, SUPREMO relies on two existing tools: Moose® (static source code
analysis tool and parser) and DUPLOC CDT [8]. Therefore, programming lan-
guage support in SUPREMO is limited to those supported by Moose: at that
time these were C++, Ada, Java, and Smalltalk. The tool was evaluated us-
ing nine software systems ranging from 2,000 to 300,000 LOC. Unsurprisingly,
the author found that clones with higher density of matching lines and higher
number of such lines are worth refactoring. Scenarios where method clones were
located in a single class or in sibling classes seemed to prevail and accounted for
over 50% of all scenarios. Additionally, a developer used SUPREMO to refactor
three systems and decided to apply suggested refactorings to 71%, 37%, and
35% of detected clones for each system respectively.

Similarly to Koni-N’Sapu [19], Fontana et al. proposed a CR recommender
technique, DCRA, that suggests scenario-based refactorings and CPs to be refac-
tored [12]. This technique can be applied to block/method level CR in Java
source code. It extends the work by Koni-N’Sapu by ranking the CP candidates
for refactoring using their weights. The weights are determined by the gains in
LOC from potential refactoring and by the compliance of refactoring to OOP
principles. For example, a PUM refactoring that preserves inheritance and sig-
nificantly reduces LOC would get a high score. DCRA was used with four open
source systems (231 CPs total) and according to the authors was able to cor-
rectly (the authors have manually assessed correctness) recommend refactoring
for 160 such CPs.

Recommender CRTs seem to be able to suggest correct refactorings (and
in case with DCRA also to prioritize those refactorings) in some situations:
although the evidence for this is still scarce. These approaches, however, do not
seem to semi-/automatically refactor source code, instead focusing on guiding
a developer. For actual application of refactoring a developer’s involvement is
still required.

3.3 Running Example: a Clone Class

To assist discussion of semi-/automated CRTs (Type “SA” in Table 3 and Ta-
ble 4) a simple example of a CC is introduced in Figure 1. In the figure, a
CC consists of three similar Python methods. Code pieces across a CC can
be divided into “common” and “varying” parts: the former are exactly similar
across a CC, whereas the latter have at least some variation. For example, in
Figure 1 common code pieces are highlighted in green and the varying parts are
left white.

"The author claims that SUPREMO can apply refactorings to source code for some cases,
however, these cases are never explicitly mentioned.
8http://moosetechnology.org/
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Listing 1: Clone 1

Listing 2: Clone 2
def some_method ():

def some_method2 ():
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Listing 3: Clone 3
| def some_method3 ():

—h

lag = True

if flag:
flag = False

52

Figure 1: Python clone class example

3.4 Semi-/Automated CRT's

Semi-/automated CRTs refactor clones according to pre-defined heuristics and
usually support a set of code differences that can be refactored. As can be
seen from Table 3, the majority of these techniques employ EM, PM or RS
refactorings and can be applied to block or method level granularity CPs/CCs.
For Type III clones, RS refactoring can be used to attempt moving varying
parts outside of clone region (see lines 4, 6 in Clone 1, line 4 in Clone 2, and
lines 4, 6-7 in Clone 3 from Figure 1) to obtain contiguous common blocks of
code [3,31]. The obtained contiguous common blocks can be further refactored
using EM, for example. Another approach adds controls to the execution of
varying parts based on a context: for instance, by introducing a control flag [26]
or by encapsulating varying code in anonymous functions and passing these as
method parameters [32].

In an early work on CR, Fanta and Rajlich [11] describe removal of func-
tion and class clones in an industrial setting. The authors refactored clones
in a software tool called PET, that was developed by Ford Motor Company
to allow for mechanical component design. The tool was implemented using
the C++ language and consisted of 120,000 LOC at that time. The authors

12



proposed a semi-automated approach to CR: a combination of custom tools
and developer interactions. The tools particularly would allow for the following
refactoring automation: function insertion, function expulsion, function encap-
sulation, function/variable renaming, and argument re-ordering. When dealing
with functions that share common code (Type III CCs can be an instance of this
scenario), the authors propose to use “function encapsulation” to extract that
common code as a function. Following that, a single function candidate is se-
lected among those extracted functions (done manually by a developer) and the
argument lists of the remaining functions in that CC are aligned to match that
selected function (supported by a tool). Next, all calls in the code are replaced
to match that selected singleton candidate and the clones are removed: both
actions are automated via tool-support. From an implementation perspective,
the tools developed by Fanta and Rajlich are supported by GEN++?, a static
C++ source code parsing and analysis tool (GEN++ allows for representation
of source code as an abstract semantic graph). The authors report removal
of clones in 10,000 LOC of PET (the exact number of refactored LOC is not
reported). The tools that were used in this work do not seem to be publicly
available.

Zibran and Roy presented an idea of LIME: an Eclipse plugin that allows
for clone detection, refactoring, and management [33]. The plugin would parse
the source code and represent it as an AST. Type I, II, and III clones are then
detected and clustered into CCs. The authors propose to refactor Type III
clones of block and method level granularity using two refactorings proposed by
Fowler et al. [13]: EM and PUM. Because at the time of writing their paper
it was ongoing work no evaluation is provided and there is no implementation
available.

Gorg proposed a template-based idea to refactor method-level CCs [14]. In
this approach, a CC is replaced with a template that generates clones at compile
time (in essence code’s footprint in LOC is being reduced, but the compiled code
still contains clones). A template consists of common unchanged code (common
for all clones within a CC) and placeholders that represent varying clones’ parts.
The approach consists of three artifacts that are extracted from Type III clones:
a domain-specific model, meta-model, and generator. The model contains clone-
specific variations and the meta-model specifies the structure of those variations.
The generator is then used to substitute the placeholders with the actual clone-
specific data. For example, varying ASTs can be specified in the model /meta-
model to provide clone-specific behaviour. This approach, however, hasn’t been
implemented or evaluated.

Bian et al. proposed a semantics preserving approach to Type IIT CR [3].
The approach, SPAPE, first attempts to move varying code pieces outside a
clone block (either before or after the block) to obtain contiguous common
code pieces (RS refactoring). To achieve that, SPAPE transforms ASTs of
a CP into two PDGs and moves varying parts if there are no data/control
dependencies. If there are dependencies between common and varying code

9mttps://web.cs.ucdavis.edu/~devanbu/genp/
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pieces, SPAPE attempts to remove those dependencies by following two code
transformation rules: duplicating conditional block (leaving one duplicate for
cloned code and creating one duplicate for varying code outside a clone block)
or duplicating loops (using similar heuristics as used for conditional block). In
cases when such transformations cannot be applied, the varying parts within
a CP are handled by introducing conditional control variables: such a variable
can control which branch is executed. For example, in Figure 1 in Clone 3, lines
6-7 can be safely moved (without changing behaviour or producing side effects)
before line 5. In Clone 1, however, line 6 cannot be moved because it is data
dependent on line 5. A CP transformed in such a manner is then extracted and
merged in a newly created method: EM refactoring. The places in code that
call this newly created method are updated with respective method calls and
arguments. SPAPE was compared to an earlier semantics-preserving algorithm
introduced by Komondoor and Horowitz [18]. Both were used to refactor clones
in 10 open source systems (ranging from 17,000 to 67,000 LOC) and SPAPE
was found 110% more effective (being able to refactor more clones) with running
time not exceeding 3 minutes. Yet, it should be noted that only 192/454 CPs
were extracted by SPAPE. Also, the complexity of these CPs and their type is
unclear. SPAPE, while automating CR also seems to introduce boilerplate code:
for example, if there are many varying parts within a CP, SPAPE will create as
many additional control variables and/or code branches hindering maintenance
and evolution of this code in the future.

The latter issue was addressed by Krishnan and Tsantalis who proposed a
technique that attempts to minimize the number of differences within a CP while
maximizing the number of common cloned statements within that pair [20]. To
accomplish this, their technique represents a CP as two extended PDGs (addi-
tional types of edges and object state variables added) and inspects all matching
solutions between these two graphs. The solution with the maximum number of
matches (common code) and the minimum number of differences (varying parts)
is selected as optimal. The technique then applies RS refactoring in a similar
way to Bian et al [3]. It also allows the refactoring of such differences as vary-
ing constant values using the PM refactoring (the technique can parameterize
seven differences, in total). The technique was compared to CeDAR (a Type II
CRT) [30]: both were used to detect clones in seven open source systems. The
authors report that their technique was able to detect 83% more refactorable
clones (344/954) than CeDAR. The authors do not report the types of clones
or the effects of refactoring (e.g. source code reduction). In their further work,
Tsantalis et al. [31] enhanced this technique, primarily by changing the code
representation and supporting more non-trivial code differences for refactoring.
For example, Krishnan and Tsantalis [20] supported seven differences: in this
work 16 are supported (e.g. this.method = a can be recognized as similar to
setMethod(a)). Another major contribution of this work was a study in which
610/2,306 CPs from nine Java systems were correctly refactored. These CPs
were covered by unit tests: this was used to ensure that the behaviour of refac-
tored code remained unchanged. In the second part of their study, the authors
assessed 1,150,967 CPs for refactorability: these were obtained using four differ-

14



ent CDTs from the same nine subject systems. They reported that less than 7%
of Type IIT CPs are refactorable using their approach. Additionally, runtime
performance of their approach was reported: in 98% of the CP cases, it took less
than one second for their approach to run. This approach was later implemented
as an Eclipse plugin, JDeodorant!? [21]. Finally, in the most recent development
of this approach Tsantalis et al. proposed to use lambda expressions (anony-
mous functions in Java 8) to address statement/block level differences in cloned
methods [32]. In this case different lambda expressions are passed as parameters
to a merged method and substitute varying statements. The same nine Java
systems from their previous work [31] were used to collect clones. First, the
authors used their approach to refactor 12,602 CPs (covered by unit tests) from
“JFreeChart” that were assessed as refactorable. Further, they assessed 18,402
Type III CPs from nine subject systems and approximately 60% of these were
reported as refactorable (but not actually refactored or tested).

Narasimhan et al. proposed a CRT that operates at method-level granularity
and can be applied to a CC [24-26]. The technique represents methods within a
CC as ASTs and calculates the largest common subtree from these ASTs. This
largest common subtree becomes a common code of a newly merged refactored
method (EM refactoring). The varying parts are refactored using PM and AP.
For example, in Figure 1 lines 1, 4, 6 in Clone 1, lines 1, 4 in Clone 2, and lines
1, 4, 6, 7 in Clone 3 are different across that CC. The difference in line 1 can be
trivially refactored by renaming the methods’ names. The other differences can
be refactored by introducing a parameter(s) (PM/AP) that takes three values.
For example, a branch or switch statement can be created that depending on the
value executes eitherg = 0, f = 0, or flag = True in the resultant merged method
(original line 4 in the clones, see Figure 1). For other differences, (e.g. varying
values) PM can be used, similar to Tsanatlis et al. [31]. The authors evaluated
their approach using 10 open source systems from Github'!'. In the first phase
of their evaluation they have refactored eight CCs in five C++ systems and
created pull requests for these changes: at the moment of writing their paper
only one refactored CC was accepted. They have repeated the process in the
second phase with 10 CCs across the other five systems: this time nine CCs
were accepted, 10/18 total pull requests across two phases accepted. The tool,
implementing this approach seems to be available as an Eclipse plugin.

Ettinger et al. [9,10] proposed an improved algorithm to that introduced by
Komondoor and Horwitz [18]. Such an algorithm takes source code input as a
PDG and attempts to move varying parts outside a clone (either before of after)
so that semantics/behaviour is preserved. A limitation to that approach [18] is
that common code pieces have to be identified manually (e.g. code highlighted
in green in Figure 1). Ettinger et al. [9] proposed an algorithm that can auto-
matically find the largest refactorable subset in a CP. The authors claim that
their algorithm improves the efficiency of the overall approach, while maintain-
ing correctness: they have applied their approach to 110 CPs and 59 of these

10nttps://marketplace.eclipse.org/content/jdeodorant
https://github.com
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seem to be refactorable by their approach with results comparable to Komon-
door and Horwitz [18]. In later work Ettinger et al. [10] theoretically proved
the efficiency and correctness of their algorithm. The implementation of their
approach/algorithm is available as a source code.

The advantages of semi-/automated CRTs:

e They can automatically refactor source code as evident by existing appli-
cation/evaluation of some CRTSs (see Table 4 for such approaches).

e These techniques seem to be able to significantly reduce the refactoring
time. For example, the performance evaluation of CRTs conducted by
Bian et al. [3] and Tsantalis et al. [31] show three minutes maximum
runtime per subject system for the former and less than a second in 98%
of the CP cases for the latter.

There are several disadvantages of using these approaches:

e They can require complex rules to account for various differences in Type
IIT clones: they currently cannot account for all situations. For example,
Tsantalis et al. in two separate works assessed 7% [31] and 60% [32] of
investigated Type III clones as refactorable (it should be noted that these
weren’t actually refactored).

e They can introduce boilerplate code reducing code quality: almost all
reviewed CRTs use common refactorings such as PM, AP, FTM, and RS
that introduce additional/duplicate branches or loops and add parameters
to control the execution of varying parts of the code, based on a given
context.

e They still need a developer’s interaction. The pull requests submitted by
Narasimhan et al. [26], though trivial, still required additional fixes (as
evident, for example, from this'? pull request’s commit history).

e From technical perspective: the most common code representations, such
as AST, CFG, and PDG (see Table 3), require a full parser.

4 Revisiting Refactoring of Our Industrial Part-
ner’s Code

The output of the CoRA feature location technique consists of a feature (in
SystemA) and its two clones (in SystemB and SystemC). Every feature (and its
clones), in turn, consists of a set of subprograms. Similar subprograms across
this feature-set (the feature and its clones) form a CC of subprogram level
granularity. The size of a CC can vary from two (a CP) to three depending
on the number of systems that have that functionality. Also, there can be
subprograms that don’t have clones (but still have to be refactored): these are

2https://github.com/oracle/node-oracledb/pull/28
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referred to as “singletons”. In this section, first an example CC'® from our
industrial partner’s product family is presented and then it is used to illustrate
common (as empirically observed by the author of this report) refactorings and
their usage statistics.

4.1 An Example of a CC: “Obfuscated_subprogram”

“Obfuscated_subprogram” (a subprogram variant in SystemA) is a CC from

the VR feature. This feature has already been refactored, tested, and merged

into production code. This CC was selected as an example because it allows

for illustration of common refactorings that were applied during the CR pro-

cess and these are discussed in the next section. It contains three subpro-
gram clones: “obfuscated_subprogram” for SystemA revision “be561caa”; “ob-
fuscated _subprogram” for SystemB revision “7ce8d06”, and “obfuscated_subprogram”
for SystemC revision “5672b187'*. This CC was consolidated in a subprogram

also called “obfuscated_subprogram” in a Common Analysis Framework (CAF)
revision “282a118”.

4.2 Common Refactorings

For every CC/CP and singleton in a feature-set (a feature and its clones) re-
turned by CoRA the following refactoring steps were performed!®:

1. Refactor a CC/CP/singleton. In this step, a subprogram(s) was refactored
and merged (applies to a CC/CP only), if possible, to obtain a single
representation.

2. Update external caller code. The calls across the product family were up-
dated to use the refactored subprogram(s). As part of this, additional
changes to a software system could include modifications of data struc-
tures, introduction of “stub” subprograms, and changes to a caller’s code.

3. Remove subprogram-clones. The old CC/CP /singleton code was removed
from the product family.

This report is focused on the common refactorings that were applied in
the first step. These can be divided in two groups: those that were applied per
subprogram (without looking at other clones in a CC/CP or if there are no clones
as is the case with singletons - referred to as “subprogram-scoped” (SS)) and
CRs discussed throughout this report (applied per CC/CP). Below commonly
used S8 refactorings and their examples from “obfuscated_subprogram” CC are
given:

13There is no need for a separate singleton example as all the refactorings that can apply
to singletons can also apply to CCs, but not vice versa.

14The actual subprograms’ names are different in the code.

15Non source code related modifications such as changes to configuration files are omitted
here. Also the testing phase is omitted.

17



e Remove an unused (dummy) argument/local variable. An argument can be
removed if other variables are not data-dependent on it and if the value of
this argument doesn’t change (and this change is visible to a caller). Ar-
gument “random_argument” in SystemC “obfuscated_subprogram” lines
4, 38, 183 can be safely removed (it is never used/changed inside the sub-
program). Similarly, a local variable can be removed if other variables are
not data-dependent on it and if the value of this variable is not returned
(in a function, for example).

e Replace module/common members with arguments (RWA). Module/com-
mon members (variables or subprograms) are replaced with extra argu-
ments to a subprogram if these members are not visible to the CAF li-
brary. For example, array “random_array” from module “random_module”
in SystemA “obfuscated_subprogram” line 4 is refactored into argument
“random_array” in CAF “obfuscated_subprogram” lines 4 and 30.

Commonly used CRs and their examples from “obfuscated_subprogram” CC
are provided below:

e Rename identifier/reserved keyword. This refactoring is a generaliza-
tion of Fowler’s “Rename Method” [13] and seems to be used in other
CRTs [26, 31] for Type II CR (clones that have different identifiers or
constants/literals/values). It refactors a CC/CP as follows: for vary-
ing identifier’s names across a CC/CP one unique name is created/se-
lected. For example, in SystemA “obfuscated_subprogram” line 145 “ran-
dom_subprogram” is called, in SystemB “obfuscated_subprogram” line 134
“randomsubprogram” is called, and in SystemC “obfuscated_subprogram”
line 166 “randomsubprogram” is called: this method call is renamed as
“random_subprogram” in CAF “obfuscated_subprogram” line 183. A spe-
cial instance of this type of refactoring is renaming of syntactically differ-
ent, but semantically identical reserved keywords: for example, “I1t.” is
semantically equal to “<”.

e PM (see Table 1). This refactoring can be used to address constant /literal
differences in a CC/CP. For example, in SystemA “obfuscated_subprogram”
line 79 “random_variable” is used in a logical expression, in SystemB “ob-
fuscated_subprogram” line 72 “0” is used in that same expression, in Sys-
temC “obfuscated_subprogram” line 86 “0” is used in the expression. Us-
ing PM this difference was refactored in CAF “obfuscated_subprogram”
lines 4, 21, and 98 where an argument is introduced and later used in that
expression.

e AP (see Table 1). This refactoring can be used standalone or as part
of other refactorings such as PM or module/common member replace-
ment. For example, in CAF “obfuscated_subprogram” lines 7, 51, and
200 “some_other_subprogram” argument is added (and later used).

o Use super-functionality (SF). This refactoring extends the functionality of
a piece of code, if possible, adding and merging similar statements/blocks
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Table 5: Common refactoring statistics across the 38 cases.

Refactoring # Cases
SS/RWA 9
CR 4
CR/SF 2
CR/RWA/SF 22
CR/RWA/SF/EM 1

of code from other clones across a CC/CP (Type III clones). For example,
in SystemC “obfuscated_subprogram” statements in lines 122-123 form a
subset of statements from SystemA “obfuscated_subprogram” lines 115-
119 and from SystemB “obfuscated_subprogram” lines 104-109. These
can be merged (if functionality is preserved) as shown in CAF “obfus-
cated_subprogram” lines 137-141.

e Optimization. This refactoring refers to various optimizations performed.
For example, lines 79-84 in SystemA “obfuscated_subprogram”, lines 72-77
in SystemB “obfuscated_subprogram”, and lines 86-91 in SystemC “ob-
fuscated _subprogram” are removed from a loop and a return statement
is added to allow for early termination, as can be seen in CAF “obfus-
cated_subprogram” lines 98-103.

4.3 Refactoring Statistics

For the three features previously refactored, 42 refactoring cases (including both
singletons and CCs/CPs) were identified altogether. To four of these, refactoring
was not applied: it was decided to leave three in the software system(s) code
and one was dead code that was removed. For the remaining 38 cases (of which
9 are singletons, 27 are CCs of size 3, and 2 are CPs), common refactoring(s)
are summarized in Table 5, using the following abbreviations:

e SS: indicates if only a subprogram-specific refactoring(s) was applied.
e CR: indicates if, in addition to SS, CR was applied.

e Additionally, it is indicated if RWA and SF refactorings (see previous
Section 4.2) were used (because the author of this report has empirically
observed these to require significant amount of refactoring effort). Also,
it is shown, for comparison, if EM refactoring (see Table 1) was used as it
is frequently described in CR literature (see Table 3).

As can be seen from the table, all the cases required refactoring: no sin-
gletons/CPs/CCs were moved to CAF as-is. RWA seems to be frequently used
across all the cases: successfully applied in 32/38 cases. For CCs/CPs, SF refac-
toring was also frequently used: successfully applied in 25/29 cases. Only in one
case, EM refactoring was additionally applied.
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5 Conclusion: Proposing CRTs for Our Indus-
trial Partner’s Product Family

In this report existing Type III CRTs were reviewed with the goal of suggesting
an approach for semi-/automation of CR across the product family. One exist-
ing literature review was used to identify CRT's proposed prior to and including
2017. An additional literature search was conducted to include newer work,
going to August 2019. Also, to ensure no important literature is missing, back-
ward/forward references of identified papers were inspected for relevant papers.
Fifteen CRT's were selected for detailed review and two methodologically differ-
ent types of CRTs were found: recommender approaches (see Section 3.2) and
semi-/automated approaches (see Section 3.4). The latter are more relevant to
our goal (semi-/automation) and their essential characteristics are summarized
below:

e These approaches seem to be capable of effectively refactoring certain code
differences in CCs and therefore can reduce refactoring effort.

e In these approaches, complex code differences seem to be addressed using
higher levels of automation. This, in turn, seems to result in increased
amount of boilerplate code and can decrease software quality.

e Complex heuristics can be required to account for all possible differences
across CCs.

e A complete language parser is required to support these CRTs.

Empirical evaluation of refactoring activities (see Section 4 and Table 5)
highlighted the following peculiarities:

e All 38 cases required refactoring.

e RWA and SF refactorings are both prevalent (RWA refactorings were ap-
plied to 32/38 identified cases (both singletons and CCs/CPs) and the
vast majority (25/29) of CCs/CPs were merged using SF refactoring) and
time and effort consuming (as observed by the author).

Based on the analysis of relevant CRTs and on the empirical evaluation of
refactoring activities, a semi-automated CRT combining heuristics-based refac-
torings and an artificial neural network (ANN) based learning can be employed.
This technique would allow for automation of some SS refactorings such as RWA,
removal of unused variables, and CRs such as renaming, PM/AP: for these code-
quality preserving refactoring heuristics can be created (possibly partially re-
using existing work by Tsantalis et al. [32] and Narasimhan et al. [26]). The au-
tomation of more complex refactorings such as SF and optimization can require
either complex (and likely infeasible for some cases, as refactorings are based
on individualized human knowledge) heuristics or can produce large amounts
of boilerplate code if naively automated. Instead, the proposed approach would
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learn from existing refactorings using ANNs: a similar approach for program
translation by Chen et al. [5] showed promising results. It could be pre-trained
on existing accomplished refactorings and would continue to re-train as refac-
torings are performed, suggesting possible solutions to a developer. Recurrent
neural networks that can translate sequence-to-sequence can be particularly
suitable for this task [5]. There are two major caveats to this approach:

e For a heuristics-based part: a full parser is required to construct the source
code’s representation. However, because only a subset of source code has
to be parsed (subprograms and partially modules), a subset of syntactic
rules would have to be implemented.

e For an ANN-based part: small datasets can impact accuracy of ANNs.
This can be remedied by applying transfer learning, for example: re-using
a pre-built similar ANN model. Such an approach was successfully used by
Google for multi-lingual ANN-assisted natural language translation [15].
One source of training data could come from Tsantalis et al. [32] who
provide several thousands of CPs and their consolidated views.
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