

University College Dublin An Coláiste Ollscoile, Baile Átha Cliath

AWARE-AI NSF Research Traineeship Program

RIT

Securing the Weakest Link: Exploring Psychological Vulnerabilities in Phishing Emails with LLMs

Faithful C. Onwuegbuche, Rajesh Titung, Esa Rantanen, Anca D. Jurcut, Cecilia Alm, Liliana Pasquale

¹ PROBLEM STATEMENT:

Despite efforts at curbing phishing, individuals and organisations still fall victim to phishing attacks [1,2].

Research Objective: we addressed how attackers exploit susceptibility factors such as fear and greed, referred to as 'psychological vulnerabilities" (PV) in phishing emails.

² **RESULTS: VULNERABILITY AND VALENCE ANALYSIS**

• Figure 2 - Attackers commonly exploit *curiosity* and *urgency* in email subjects.

Figure 1: System Design

- Figure 1: shows the system design used in the study. We proposed a taxonomy of PV (fear, urgency, greed, curiosity, trust, compassion) inspired by previous theories [3,4] on human susceptibility to scams and fraud.
- Using a dataset targeting 6 universities [5], we assessed how LLMs (GPT 4, Llama2, and GeminiPro) automatically detect vulnerabilities and valence.
- We evaluated the performance of LLMs to human annotations • using reliability statistics and analysed LLM hallucinations.

• Figure 3 - Attackers commonly exploit *urgency*, *trust*, and fear in email bodies.

³ **RESULTS: PAIRED ACCOMPANIED VULNERABILITIES:**

• Figures 7 & 8: Attackers use a single vulnerability for email subjects and multiple for the body. *Urgency-Fear* pair is prevalent in subjects, while *Urgency-Trust* pair is more exploited in the body.

RESULTS: VALENCE-AROUSAL MAPPING:

Analysis	Email	N	κ or α	Soft (%)	Hard (%)
Reliability Between Humans and LLMs					
Psy. Vul.	Subject	133	0.2471	56.39	43.61
	Body	200	0.0179	88.38	17.17
Sentiment	Subject	137	0.4092	-	90.51
	Body	113	0.4015	-	78.76
Reliability Between Humans and GPT4					
Psy. Vul.	Subject	133	0.229	64.66	42.11
	Body	200	0.0174	84.85	19.7
Sentiment	Subject	137	0.3957	-	91.97
	Body	113	0.4401	-	88.5
Reliability Between Humans and GeminiPro					
Psy. Vul.	Subject	133	0.3303	67.67	54.14
	Body	200	-0.0055	77.78	5.05
Sentiment	Subject	137	0.2597	-	82.48
	Body	113	0.2222	-	60.18
Reliability Between Humans and Llama2					
Psy. Vul.	Subject	133	-0.0837	18.8	14.29
	Body	200	-0.0281	92.93	10.61
Sentiment	Subject	137	0.3409	-	87.59
	Body	113	0.3412	-	73.45

Table 2: Inter-rater reliability analysis for LLMs and Humans.

- Table 2 All LLMs show agreement with human annotators.
- GPT-4 outperforms GeminiPro and Llama2 overall, with higher Cohen's Kappa and Krippendorff's Alpha values.

Future Work:

- Expand the study to incorporate datasets from diverse sectors beyond universities.
- Evaluate whether identifying PV in phishing emails can improve the performance of

Figure 10: Body Mappings

Figures 9 & 10: *Urgency* & *Fear* exhibit the highest arousal levels in both email subjects and bodies, while *Trust* & *Curiosity* show lower arousal.

automated machine learning phishing detection approaches.

References

[1] MUNCASTER, P. What is phishing and how do you prevent phishing attacks? https://www.verizon.com/business/resources/articles/s/whatis-phishing-and-how-do-you-prevent-phishing-attacks/

[2] PROOFPOINT. 2022 State of Phishing. https://go.proofpoint.com/en-2022-state-of-the-phish.html

[3] CIALDINI, R. B., AND CIALDINI, R. B. Influence: The psychology of persuasion, vol. 55. Collins New York, 2007.

[4] SCHNEIER, B. A Hacker's Mind: How the Powerful Bend Society's Rules, and how to Bend Them Back. WW Norton & Company, 2023.

[5] CIAMBRONE, G., ANDWILSON, S. Creation and analysis of a corpus of scam emails targeting universities. In *Companion Proceedings of the* ACM Web Conference 2023 (New York, NY, USA, 2023), WWW '23 Companion, Association for Computing Machinery, p. 24–27.

