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Abstract

Code clones occur in source code, due to such coding practices as
copy&paste and code re-use. Subsequently, code clones can impede soft-
ware maintenance activities and so, to identify clones, a number of clone
detection techniques were proposed. In this report, three existing litera-
ture reviews and a subsequent clone detection literature search in ACM
and IEEE Xplore digital libraries were used to identify the pool of exist-
ing techniques. From these techniques 13 were selected (based on high
citation index), assigned to seven classes, and reviewed in detail. Addi-
tionally, the advantages and limitations for each class of techniques were
outlined.

The analysis of clone detection techniques indicates that there is still
work that has to be done when improving detection of Type III and Type
IV clones. Also, tree-based and graph-based techniques can require addi-
tional parsing of source code and the algorithms used in these approaches
can have inappropriately large time complexity. Based on these conclu-
sions, text-based (potentially augmented with structural information), in-
formation retrieval based, clone detection techniques are recommended
to locate clones in our industrial partner’s software systems: SystemA,
SystemB, and SystemC.
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Abbreviations

AST . . . . . . . . . . . . . Abstract syntax tree

CD . . . . . . . . . . . . . . Clone detection

CDT . . . . . . . . . . . . Clone detection technique

HT . . . . . . . . . . . . . . Hybrid clone detection technique

IR . . . . . . . . . . . . . . . Information retrieval

KLOC . . . . . . . . . . . Thousand lines of code

LOC . . . . . . . . . . . . . Line of code

LSI . . . . . . . . . . . . . . Latent semantic indexing

MBT . . . . . . . . . . . . Metrics based clone detection technique

MLOC . . . . . . . . . . Million lines of code

MOBT . . . . . . . . . . Model based clone detection technique

PDG . . . . . . . . . . . . Program dependence graph

PDGBT . . . . . . . . . Program dependence graph based technique

TKBT . . . . . . . . . . . Token based clone detection technique

TRBT . . . . . . . . . . . Tree based clone detection technique

TXBT . . . . . . . . . . . Text based clone detection technique

UML . . . . . . . . . . . . Unified modelling language
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1 Introduction

A code clone (further in the text referred to as “clone”) is a piece of code,
that is similar to another piece of code to a certain degree [11]. This coupling
(between the clone and the other similar piece of code) is called a “clone pair”.
Clones can appear in a software system (or across several software systems in
a product family) as a result of code re-use or as a result of using clone-prone
programming approaches. Common forms of code re-use are [25]:

• Copy&paste;

• Re-use of functionality;

• Branching of the entire software system1.

Programming approaches that can add clones to source code include [25]:

• Generative programming;

• Merging of software systems;

• Delay in restructuring.

As a a result of these practices, software systems can consist of a sizeable
number of clones. For example, Rattan et al. [23] suggest that 20%-30% of code
in large software systems is cloned. This negatively affects software maintenance
[3, 13, 21]: modifications or bug fixes to an original piece of code must also
propagate to its clones and often it is hard to find the location of those clones
[23]. To reduce the number of clones, first they have to be identified/detected.
In this report, clone detection is defined as identifying clones in the source code
of a software system or across the software systems in a product family.

In large software systems, manual clone detection is infeasible [2]. Therefore,
techniques that automate clone detection to a certain degree are needed. A clone
detection technique (CDT) is a semi-/automated approach to clone detection.

Plenty of CDTs have been proposed in the literature [2, 23,25]. The goal of
this document is to report on the state-of-the-art in CDTs. (And the ultimate
goal is to suggest the appropriate CDT(s) to be used in the second phase (CD)
of our industrial partner’s source code reunification project of its three systems:
SystemA, SystemB, and SystemC.) To accomplish the goal of this report, three
well-known literature reviews of CDTs are discussed [2,23,25] and subsequently
this discussion was expanded to incorporate to newer work on CD.

This document is structured as follows: in Section 2, the literature review
process is described. In Section 3, different classes of CDTs are reviewed in
detail and their benefits and limitations are highlighted. Section 4 concludes
this review.

1The latter is the case with our industrial partner’s products: the development branch
of SystemA source code was forked two times to produce SystemB and SystemC products
respectively.
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2 Literature Review Process

2.1 Identification of CDTs that Appeared before and In-
cluding 2011

Because there is a plentiful body of knowledge in the CD area built up over a
considerable period of time, it is reasonable to rely on existing, well-known lit-
erature reviews for identification of existing CDTs. Three well-known literature
reviews were selected and their details are shown in Table 1.

Table 1: The comparison of CD reviews.
Bellon2007 Roy2007 Rattan2013

Credibility

# Citations 588 503 141

Venue
Journal: Transactions on

Software Engineering
N/A (technical report)

Journal: Information and

Software Technology

Peer-reviewed Yes No Yes

Venue H-index 137 N/A 76

Systematic literature

review
No No Yes

Literature review scope

and statistics

# CDTs 19 31 73

Period of CD research

covered
At most 2007 At most 2007 Up to and including 2011

Clone types described 3 types 4 types 9 types

Classification/taxonomy

of CDTs
6 classes of CDTs 6 classes of CDTs 7 classes of CDTs

When selecting these existing reviews their credibility (via their citation
index) was considered and their year of publication. While Bellon2007 and
Roy2007 are dated, Rattan2013 updates these reviews with more recent CDTs
and has a very large citation index for an article published four years ago.
The scope of covered CDT papers was also considered and this was particularly
impressive in the more recent Rattan2013 review (there is a broad representation
of CDTs).

As can be seen from Table 1, all these reviews have high numbers of cita-
tions2, which indicates their popularity and high relevance among CD research
community3. Two of these reviews (by Bellon et al. and by Rattan et al. [2,23])

2These numbers were recorded by Google Scholar (https://scholar.google.com/) as of
September 2017.

3It should be mentioned that sometimes a high citations number could be an indicative of
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Figure 1: Intersection of CDTs reviewed by Bellon2007, Roy2007, and Rat-
tan2013

.

were published in high quality (as indicated by their high H-indexes4), peer-
reviewed venues. Additionally, the paper by Rattan et al. [23] is a systematic
literature review paper. A systematic literature review is a type of literature re-
view, originating in medicine research, that incorporates a rigorous methodology
to answer research questions of that review [8, 14, 22]. Because of the rigorous
methodology, this type of literature review has a number of advantages, such
as reduced bias when selecting papers [22], and, hence, has been suggested for
researchers and practitioners in software engineering [8, 14,22].

Together these three literature reviews cover 78 unique CDTs (for a complete
list of these CDTs see Appendix A: Listing and Classification of All CDTs
Reviewed by Bellon2007, Roy2007, and Rattan2013). There is an overlap in
the CDTs, covered by these literature reviews, as can be seen in Figure 1. The
majority (73) of CDTs were reviewed by Rattan et al. [23], but there are also
four CDTs that were reviewed by Bellon et al. only and one together by Bellon
et al. and Roy et al. [2, 25].

In this report, no additional literature search was conducted to identify CDT
papers, appearing in the literature prior to 2012. The 78 CDTs, identified by
the three reviews discussed above, were considered exclusively when reviewing
CDTs prior to 2012 because:

• The systematic literature review process was employed by Rattan et al.
[23] (the peer-reviewed paper that reviews the majority of CDTs (73)).
The authors explicitly used six top-quality, relevant, digital libraries to
conduct their search and employed explicit search terms and relevant in-

a negative feedback (for example, a publication was heavily criticized).
4H-index in this case is the journal’s number of articles (h) that received at least h citations.

These indices were provided by Scimago (http://www.scimagojr.com/) as of September 2017
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clusion criteria to select the papers. Such an approach objectively identi-
fies high quality CDT papers.

• The remaining five CDTs come from two highly cited reviews [2, 25] and
one of these reviews was peer-reviewed [2].

• The high overlap of CDTs identified by these three independent reviews
(see Figure 1) suggests that there is high agreement on the CDTs that
should be included pre-2007, a suggestion that is buttressed by looking
at the year-of-publication of these CDTs. The majority of the remaining
non-overlapping CDTs, referred to in Rattan et al. were post 2007 [23].

• In terms of the period covered, these three reviews cover CD research up
to 2012.

The above reasons do not imply that all the relevant CDTs were identified
by these reviews for the given period. However, the rigorous literature search
process, the high quality digital libraries selected, the number of CDTs iden-
tified, and the fact that these reviews cover highly similar ground in terms of
CDTs identified for a given period, suggests that the corpus of identified CDTs
is a decent representation of CD research for that period. It also suggests that
further analysis would only incrementally affect the outcome for that period.

2.2 Identification of CDTs that Appeared after 2011

The five years that have passed since the reviews suggest that the list of CD
literature needs to be updated to include newer CDTs. To give a preliminary
estimate of the volume of CDT papers that were published between 2012 and
2017 (both years inclusive), the following procedure was used:

• Two well-known digital libraries were selected: ACM5 and IEEE Xplore6.
These libraries were selected, because they were previously used in the
CD review by Rattan et al. [23] and also because these libraries together
store a large corpus of computer science related literature (arguably, the
largest corpus).

• The search string “clone detection” was used with the search engines of
these two digital libraries, mentioned above, to retrieve the documents
that contain both search string terms (“clone” and “detection” in any
order) in their titles.

• The search engines were instrumented to return only the papers that were
published after 2011.

Using the procedure above, ACM search engine returned 51 matching doc-
uments and IEEE Xplore search engine returned 126 matching documents.

5https://dl.acm.org
6http://ieeexplore.ieee.org/Xplore/home.jsp
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2.3 Classification of CDTs in This Report

Because of a large volume of CDTs, it is convenient to describe them using
taxonomies. In taxonomies, individual objects are assigned to a class according
to a set of characteristics common to this class. In CD, such characteristics
are the type of source code representation and/or the type of clone matching
employed by a CDT [2,23,25].

Table 2: Classes and the number of CDTs in these classes as used by Bellon2007,
Roy2007, and Rattan2013.

Bellon2007 Roy2007 Rattan2013 This report

Text-based (2) Text-based (5) Text-based (11) Text-based (11)

Token-based (4) Token-based (4) Token-based (10) Token-based (11)

Tree-based (2) Tree-based (5) Tree-based (18) Tree-based (17)

PDG-based (2) PDG-based (3) PDG-based (5) PDG-based (6)

Metric-based (5) Metrics-based (8) Metrics-based (13) Metrics-based (15)

Other (4) Hybrid (6) Hybrid (10) Hybrid (12)

Model-based (6) Model-based (6)

The existing literature reviews, as discussed in Section 2.1, use slightly dif-
ferent names of classes (see Table 2) and do not always agree on the class of
a CDT (for example, see the “Sim” CDT in Appendix A: Listing and Classifi-
cation of All CDTs Reviewed by Bellon2007, Roy2007, and Rattan2013). For
consistency, in this report the CDTs from these reviews were re-classified using
the following rules:

• A “majority vote” was used when assigning a CDT to a class. For example,
the “Sim” CDT was classified as token-based by Bellon et al. and Roy
et al. [2, 25] and as tree-based by Rattan et al. [23] (see Appendix A:
Listing and Classification of All CDTs Reviewed by Bellon2007, Roy2007,
and Rattan2013). Because of the majority vote, Sim was classified as
token-based in this report.

• If no majority vote could be obtained, the classification as per the more
recent review was used. For example, the “clones/cscope” CDT was clas-
sified as hybrid by Roy et al. [2, 25] and as token-based by Rattan et
al. [23] (see Appendix A: Listing and Classification of All CDTs Reviewed
by Bellon2007, Roy2007, and Rattan2013). Because the review by the
latter authors is more recent, clones/cscope was classified as token-based
in this report.

As a result of the re-classification process, seven classes of CDTs, as shown
in the final column of Table 2, are used in this report. The CDTs that appeared
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after 2011 (see Section 2.2) were successfully assigned to one of these classes. If
the authors of these CDTs explicitly specify the class then that class was used.
Otherwise, a CDT was assigned to a class following the descriptions of the class
as per Rattan et al. [23].

2.4 Selecting CDTs for Detailed Review

As follows from Section 2.1 and Section 2.2, the number of CDTs is large. Thus,
it is not feasible to review all the relevant literature due to time constraints.
Hence, it was decided to review in detail only a sub-set of these CDTs.

To select from the pool of 78 CDTs that appeared prior to 2012, the following
selection procedure was used:

1. From each class of CDTs (see Table 2), select one7 CDT that appears in
the majority of reviews [2, 23,25].

2. If there are several such CDTs (or if none of them appears in more than
one review), pick the one with the highest citation count.

To select from CDTs identified in Section 2.2, the following selection proce-
dure was used:

1. The documents returned by the ACM and the IEEE Xplore were sorted
by the number of times they were cited.

2. From each of these two document lists, the five top-cited relevant papers
were selected. The relevance of a paper was identified by the author of
this report by reading the abstract and the introduction of the paper,
if needed. The author applied the following criteria when assessing the
relevance of a paper:

• The paper had to present a novel/significantly modified CDT.

• The paper had to provide the evaluation of the presented CDT.

• The paper was not a follow-up paper to one of the already selected
papers.

3. From the resultant set of 10 documents (five from the ACM results and
five from the IEEE Xplore results) the final set of top five documents
was selected for detailed review. If a paper occurred in both lists, it
was automatically included in the final set. The remaining papers were
included according to their citation count.

By following these procedures, eight pre-2012 CDTs [1, 5, 6, 11, 16–19] and
five post-2012 CDTs were selected for review [9, 12, 20, 26, 27]. The selection
procedures above ensured influential paper selection and also ensured every
class of CDTs is represented by at least one technique.

7One exception to this rule was the selection of two textual CDTs [6, 18]. Though these
two CDTs belong to the same class, their heuristics are substantially different. Thus, it was
decided to include them both for a more thorough review.

8



2.5 Clone Types

CDTs are usually capable of identifying certain clone types. Clone types usually
define how close (similar) two or more pieces of code are to each other [2, 25].
Rattan et al. additionally seem to use clone types to refer to a granularity of
clones [23]. The complete list of clone types, as used by the three literature
reviews (see Section 2.1) is shown in Table 3.

Table 3: Clone types as used by Bellon2007, Roy2007, and Rattan2013.
Bellon2007 Roy2007 Rattan2013

Type I Type I Type I

Type II Type II Type II

Type III Type III Type III

Type IV Type IV

Structural

Model

Function

The following definitions of clone types are used:

• Type I: two pieces of code that are identical, bar white-spaces, comments,
and layout.

• Type II: two pieces of code that, in addition to Type I differences, have
also the names of identifiers and literals changed.

• Type III: two pieces of code that, in addition to Type II differences, have
also LOC added, modified, and/or deleted.

• Type IV (semantic clones): two pieces of code that implement identical
functionality, but otherwise are textually different.

• Structural clones reflect design similarities usually expressed at the level
of software architecture [23].

• Function clones are limited to sub-program level granularity.

• Model clones are similar pieces in a model-based software systems.

In this report the first four types (Type I - IV) are used when describing
CDTs, because they seem to align with degree of detection-difficulty.

2.6 Evaluation of CDTs

There are no standard methodologies when evaluating CDTs [23, 25]. Most
often, to assess the effectiveness of a CDT, precision and recall are calculated
[23, 25]. One way to calculate precision and recall for a CDT involves clone
candidates. A clone candidate is a piece of code, returned by a CDT, that is a
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potential clone. Then, the recall and the precision for a CDT is calculated, as
shown in Formula 1 and in Formula 2 for recall and precision respectively. In
these formulas, CC is a set of clone candidates and C is a set of known clones
in a software system, a “gold set”.

Recall =
CC ∩ C

C
(1)

Precision =
CC ∩ C

CC
(2)

Other evaluation criteria of CDTs, mentioned in the literature [25], involve:

• Portability: how applicable is a CDT across different programming lan-
guages and dialects.

• Scalability: how effective is a CDT in large software systems.

• Robustness: how effective is a CDT in identifying various clone types.

3 Clone Detection Techniques

3.1 Text Based Techniques

Text based CDTs (TXBT) analyze source code as textual data and can ap-
ply text pre-processing such as comments removal, white-spaces removal, and
normalization [25]. In TXBTs, code pieces are usually compared to each other
according to the similarity of their textual representation [23]. Usually, the
comparison is done line-by-line, where strings belonging to different pieces of
code are compared to each other, until some condition is met (e.g. a minimum
number of similar lines is reached [25]). Textually similar (the similarity defini-
tion/threshold used by authors of TXBTs can vary) pieces of code are marked
as clones and are returned as clone pairs.

A good example of a TXBT is the “duploc” approach, proposed by Ducasse
et al. [6]. Duploc takes two source code files X and Y as an input and pro-
duces a report of clone pairs that were found in these files and visualizes the
cloned code in the form of a scatter plot (in this plot, horizontal data represents
LOC in X and vertical data represents LOC in Y ). In the first step, duploc
applies minimal transformations to lines in a file: comments and white-spaces
are removed. In the second step, every line is compared to every other line for
textual similarity: if a line is exactly similar to the other line then the result is
“true”, otherwise the result is “false”. (Because comparing every line to every
other line is computationally expensive (O(NxM) complexity in general case),
the authors proposed calculating a hash for every line. The hash function pro-
duces an input-unique fixed size data value: all exactly similar lines will have
the same hash value. These lines that have the same hash value are placed into
a “bucket”. Then, instead of line-by-line comparison, the hash value of a line
could be matched to the common hash value of the bucket.) The results are

10



stored in a matrix NxM , where N is the number of LOC in file X and M is the
number of LOC in file Y . The coordinates of the result in the matrix are [n, k],
where n is a line position in file X and k is a line position in file Y . For example,
if a line 15 in the file X is compared to a line 10 in the file Y , then the result of
this comparison is stored in the matrix cell with the coordinates [15,10]. In the
resultant matrix, sequences of true values in the diagonals (top left to bottom
right) indicate cloned code (a clone pair). Some of these sequences may have
gaps (“false” values as a result of added/modified/deleted lines). Thus, when
extracting clone pairs, the authors allow for the gaps of a certain size to occur
in the sequences. The authors evaluated their technique using four software
systems, all of which were written in different programming languages. They
found that the average percentage of duplications in a file could range between
5.9% and 25.4% for different systems. The accuracy of these numbers is ques-
tionable though, because no “gold set” of known clones was used to evaluate
the technique. Additionally, the technique demonstrated low performance in
terms of running time: in a few cases the running time took up to seven hours
to complete. The independent comparison study, conducted by Bellon et al. [2],
showed that duploc was able to detect Type I and Type III secretly injected
clones (duploc does not classify clones by type), showed average recall of 50%
with a “cook” system, but failed to work on larger software systems.

A different TXBT was proposed by Marcus and Maletic [18]. Contrary to
the duploc technique, the authors of this approach leverage comments (and also
identifiers) that are available in source code. The input to their technique is the
source code of a software system. It is partitioned into source code components
(e.g. sub-programs). Each such source code component is then represented
by a textual document. These resultant textual documents are organized into
clusters according to their textual similarity. The information retrieval (IR)
technique latent semantic indexing (LSI) is used to compare the documents.
The authors do not compare their approach to other CDTs and to the best of
our knowledge there are no such comparisons available in other studies. Roy et
al. suggest that this technique is able to detect Type III and Type IV clones [24].

The major advantages of TXBTs in general are:

• Programming language independence: because these approaches are usu-
ally language-agnostic, they could be applied to a variety of source code
files written in different programming languages.

• TXBTs usually require very little or no parsing of source code.

The limitations of these techniques include:

• Over-reliance on abundant and meaningful textual data: if such data is
scarce/meaningless these techniques are less effective.

• Some TXBTs (e.g. duploc) are unable to detect clones that are very
different textually (e.g. Type IV clones).
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3.2 Token Based Techniques

Token based techniques (TKBT) transform the source code into a sequence of
tokens. A token is a pair that has a name and a value to it. For example,
in Table 4 every column (except the first column) represents a token. The
upper row represents tokens’ names and the bottom row represents tokens’
values. A special program, called a tokenizer or lexer, is used to transform the
source code into a sequence of tokens. Tokenizers take the source code as an
input and follow the rules of the programming language to transform the source
code into a sequence of tokens. If there are two or more similar sub-sequences
(sub-strings) of tokens in the resultant sequence (string) of tokens, then these
sub-sequences are clones. Because naive sub-string search is inefficient, TKBTs
usually employ more effective string search data structures (and corresponding
algorithms), such as a suffix tree [25]. A suffix tree stores all suffixes of a string
S of length M , resulting in the tree having M leaves. Using a suffix tree, one
can find a sub-string of a length K in the string S in O(K) time.

Table 4: An example of a Java statement tokenization.
Sequence of tokens Identifier Operator Identifier Operator Literal Separator Comment

Sequence of source code

characters (Java language)
x = a + 2 ; // assignment

Kamiya et al. proposed a TKBT, CCFinder, that extracts clones from source
code written in C/C++, Java, COBOL, and other languages [11]. The input to
CCFinder are source code files. First, CCFinder transforms the source code files
into a sequence of tokens: the output of the first step is a concatenated sequence
of all tokens in a software system (every source code file is transformed into a
sequence of tokens and these sequences are concatenated). In the second step
the token sequence is transformed: certain tokens are added/removed/changed
according to the transformation rules, specified by the authors. Some of these
rules are:

• Removal of name-space related tokens.

• Addition of separator tokens to standardize the code. For example, ac-
cording to compound block rule [11], in C-like languages, block separator
tokens “{” and “}” will be added to one-line if-blocks, if missing.

In the following step, clone pairs are detected using the suffix tree data structure
and sub-string search algorithms used with this data structure. Code pieces in
a clone pair contain line numbers, that allow for identification of these pieces in
source code files. The authors did not compare CCFinder to other CDTs. They
reported on the performance of the technique: the processor time and memory
usage increase linearly with the size (in terms of LOC) of a software system. In
contrast, Burd and Bailey in their evaluation study of CDTs reported precision
of 72% and recall of 72% for CCFinder [4]. Ducasse et al., however, reported
more modest results with precision at 42% and recall at 43% [7].
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More recently, another TKBT, Boreas, was proposed by Yuan and Guo [27].
First, Boreas filters irrelevant data from source code: string literals, comments,
and include statements are removed. In the second step, tokens that represent
variables, programming language reserved keywords, and symbols (e.g. sepa-
rator, operator) are extracted from a piece of code. In the next step, metrics
are calculated for each token representing a variable in a piece of code. For
example, the number of variable’s assignments, usages and occurrences in con-
ditional/loop blocks is counted. The resultant metrics are stored in a “count
vector” so that each variable has its own such vector. The set of these count
vectors is stored in a “count matrix”. In the fourth step, count vectors for re-
served keywords and symbols are populated: the number of occurrences for each
keyword and symbol is counted. To assess if two pieces of code form a clone
pair, their cosine similarity is calculated using their count matrices of variables,
their count vectors of reserved keywords, and their count vectors of symbols.
Thus, similar code pieces can be organized into clusters. Boreas was used to
detect clones in Java SE Development Kit 7 and Linux Kernel 2.6.38.6. The
results were compared to another CDT, Deckard [10]. The evaluation showed
that Boreas is able to identify a similar amount of cloned code (in terms of
LOC) with precision comparable to that of Deckard. However, the authors of
Boreas claim that it is more scalable: it requires less processor time and disk
space.

Murakami et al. proposed a TKBT, CDSW, that identifies “gapped” clones
(Type III clones) [20]. The input to the technique is a source code. First, the
source code is transformed into a sequence of tokens. In the next step, hash
values are calculated for every statement. (The authors define a statement as a
sub-sequence of tokens that is separated by “;”, “{”, and “}” symbols.) Thus,
the source code is represented by sequences of hash values. These sequences
are compared using the Smith-Waterman algorithm. The algorithm identifies
similar regions between two given sequences. The sequences that are similar
above a given threshold form a clone pair. CDSW was evaluated using eight
software systems and was compared to the eight other CDTs. The authors found
that the recall and precision of CDSW were modest when compared to other
techniques. However, the harmonic mean (a measure that evaluates precision
and recall together) of CDSW was better than that of the other CDTs. This
suggests that CDSW is a balanced CDT (in terms of precision and recall). The
execution time for all the systems was below 30 seconds.

SourcererCC is a TKBT, proposed by Sajnani et al. [26], that particularly
targets Type III clones in large software systems/systems’ repositories. The
technique represents the source code of a software system as a set of “code
blocks”. The authors define each code block as a piece of code within braces.
The code block is then represented by a “bag-of-tokens” (similarly to a “bag-
of-words” in IR: the order of tokens is not important, but their multiplicity is
important). The similarity between two code blocks is calculated as the inter-
section between their bags-of-tokens. If the number of similar tokens is above
some specified threshold, then the two code blocks are considered similar. Such
an approach, however, is inefficient (especially when applied to large software
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systems), because every code block has to be compared to every other code block
in a system, resulting in O(N2) time complexity. Thus, the authors propose two
optimizations:

• Tokens, representing a code block, are sorted in such a way that less
frequent (more rare) tokens appear at the beginning of the token list.
Then only sub-lists, containing the i first elements, are compared.

• Code blocks can be rejected as clone candidates without comparing all
the tokens: the sum of current matches and the minimum number of
unseen tokens in code blocks can be used. For example, if given two code
blocks B1 = a, b, c and B2 = b, c, d, e, f and a threshold equal 3, then
1 + min(1, 4) < 3 (token b is one match and there is one unseen token
in B1 and four unseen tokens in B2) and hence these code blocks are not
clones.

SourcererCC was compared to four other state-of-the-art CDTs. For scal-
ability, the IJaDataset, containing 250 MLOC was used. It was found that
SourcererCC scales well to large software systems, in some cases outperforming
the other four CDTs. The recall of SourcererCC was assessed using the Muta-
tion Framework and the BigCloneBench benchmarks [26]. With the Mutation
Framework, SourcererCC showed 100% recall when detecting Type I, Type II,
and Type III clones. With the BigCloneBench, SourcererCC showed high recall
when detecting Type I and Type II clones, but much weaker recall when de-
tecting Type III and Type IV clones. The authors also manually calculated the
precision of SourcererCC and found that it is comparable with the other four
CDTs.

The advantages of TKBTs are as follows:

• TKBTs can detect Type II clones: the source code can be abstracted using
tokens and clones with renamed parts can be found.

• Execution times seem to be low when compared to other CDTs.

The limitations of TKBTs are:

• Tokenization is required to convert the source code in to a sequence of
tokens. To support multiple programming languages, a tokenizer has to
be created for each such language.

• In general, TKBTs do not seem to detect Type III and Type IV clones
very accurately.

• Optimizations might be needed when using TKBTs in large software sys-
tems.
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Figure 2: AST of the source code from Table 4
.

3.3 Tree Based Techniques

Tree based techniques (TRBT) represent source code as a full parse tree or as
an abstract syntax tree (AST)8. A special program called a “parser” transforms
source code into these tree-like structures according to the grammar rules of the
programming language. For example, the AST of the piece of source code shown
in Table 4 can look as shown in Figure 2. Once the source code is transformed
in to a tree, similar sub-trees (clones) can be located.

Baxter et al. were one of the first to introduce a TRBT, CloneDR [1]. In
the first step, the approach transforms the source code into an AST. Finding
clones in this tree using naive sub-tree comparison is computationally expensive
(the authors claim O(N4) time complexity). Thus, they proposed to categorize
sub-trees with hash values and put them into B number of buckets: only the
sub-trees in the same bucket need to be compared. According to the authors,
such an approach allows for reduction of the time complexity down to O(N).
This approach, however, works for exact sub-trees and fails to detect sub-trees
that have additional modifications (Type III clones). This happens because a
good hash function will put such different sub-trees into different buckets. To
solve this problem the authors proposed to use “bad” hash function, that ignores
small trees in a sub-tree when calculating the hash value.

The authors haven’t compared their technique to other existing CDTs. How-
ever, CloneDR was used in the comparison study by Burd and Bailey [4]. In
that study, when compared to the other four CDTs, CloneDR demonstrated the
highest precision of 100% and the lowest recall of 9%. The subsequent study by
Bellon et al. [2] also showed that CloneDR finds only a small amount of clones
(hence, small recall). Additionally, CloneDR showed poor scalability results (in
terms of processor time and memory requirements) [2].

8The difference between the two is in the amount of details: in ASTs some details such as
white-spaces and parentheses can be omitted.
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More recently, another TRBT was proposed by Ishihara et al. [9] that allows
for detection of method-level granularity clones. In the first step of their ap-
proach, the ASTs are created for every source code file in a software system and
those sub-trees that correspond to methods are extracted. In the second step,
these extracted sub-trees are normalized: variables and literals are replaced
with special tokens to eliminate non-essential differences in the sub-trees. Fur-
ther, methods that have no inner blocks (conditional/loop pieces of code) are
excluded. The reason for exclusion is to remove smaller getter/setter9 methods
whose presence can introduce many false positive clone candidates. The remain-
ing methods’ ASTs are transformed into textual representations and hash values
are calculated for each of them. In the final step, the methods are grouped ac-
cording to their hash values: the groups of two or more methods indicates that
they are clones.

The authors conducted a pilot study where the scalability of this technique
was evaluated. The results show that the technique was able to complete in
four hours against the 360 MLOC.

The advantages of TRBTs are:

• TRBTs can detect Type III clones.

The limitations of TRBTs are:

• Parser (and the corresponding grammar file) is needed to build an AST
or full parse tree.

• Because of the previous point, TRBTs are not easily scalable for multiple
programming languages.

• Execution times can be long, if a TRBT is not optimized [23].

3.4 Program Dependency Graph Based Techniques

Program Dependency Graph Based Techniques (PDGBT) represent source code
as a program dependency graph (PDG). A PDG contains information about the
data flow or the control flow in a piece of code. For example, a PDG can allow
for tracing of a variable’s assignment and usage in a piece of code: vertices of a
PDG can represent statements where a variable is assigned/used and edges can
connect these statements. PDGs are different from ASTs: the former represent
semantic information about a piece of code, whereas the latter are built using
the syntactic rules of a programming language [25].

Krinke proposed a PDGBT, “duplix”, that represents the source code as a
PDG and detects clones as similar sub-graphs in the PDG [16]. Vertices of the
PDG are derived from those of an AST, except for the definitions of variables
and procedures: these are assigned to special vertices. Also, the vertices in the
PDG have additional attributes such as class, kind, and value. Additionally,

9Methods in Java language that set or return an object property value. These methods
are generally small and pervasive.
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control and data flow edges are added (e.g. vertices that assign/use/access a
variable are connected). Then the problem of clone detection can be solved
by finding isomorphic sub-graphs in such a PDG10. The problem of finding
isomorphic graphs is NP-complete, thus the author proposed an approximation
algorithm. The algorithm starts at two distinct vertices and inspects outgoing
edges of these vertices. The edges that have the same attribute (class) are used
to reach the next set of vertices. These vertices are added to a set and marked
as the next vertices for inspection. The algorithm repeats until there are no
outgoing edges of similar class or k number of steps has been reached. The
resultant two sets of vertices belong to similar (isomorphic) sub-graphs. The
author has evaluated duplix for scalability using 15 small (ranging from 2KLOC
to 25 KLOC) software systems and has found that the execution times rise
exponentially when increasing k values. In some cases, it took a significantly
long time for duplix to complete (e.g. about seven hours to complete CD in
a “twmc” software system that has 24,950 LOC). The study by Bellon et al.
showed that duplix is able to detect Type III clones, but also reported poor
scalability in terms of processing time [2].

The advantage of PDGBTs is similar to those of TRBTs: they can detect
Type III clones.

The limitations of PDGBTs are:

• To construct a PDG source code has to be parsed: a parser is needed.

• PDGBTs are not easily scalable for multiple programming languages.

• Execution times can grow exponentially rendering PDGBTs inefficient
with larger software systems.

3.5 Metrics Based Techniques

In metrics based techniques (MBT), characteristics (usually quantitative ex-
pressed as metrics) of clones are compared. As a precursor to that comparison,
the source code is transformed into one of the representations discussed in the
previous sections: text, tokens, ASTs, or PDGs. Various metrics for those rep-
resentations are collected and accumulated into metrics’ vectors. These vectors
are then compared and similar vectors mean that a potential clone pair is found.

Mayrand et al. proposed a MBT, CLAN, to detect clones of function-level
(sub-program-level) granularity [19]. The technique transforms the source code
of each function in a software system into an AST and an AST is subsequently
transformed into an “intermediate representation language”. The latter form
is used to collect the metrics that assess the name of a function, the layout of
a function, the expressions of a function, and the control flow of a function.
For example, the layout metrics show the amount of comments and blank lines
in a function. The expression metrics can show the amount of external calls
to other sub-programs and the number of declaration statements. The control

10In this context, the two graphs are isomorphic if there is a bijective mapping between
their edges, attributes, and connected vertices
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flow metrics can show the number of decisions and loops. For each function the
values of these metrics are aggregated into a numeric vector. These numeric
vectors are compared to detect similar functions (clones): if the vectors are
exactly similar or if the delta of difference is below some specified threshold
then the functions, represented by these vectors, are likely clones. CLAN was
evaluated in two other studies by Bellon et al. and by Koschke et al. [2, 15].
Both studies reported that CLAN identifies a small amount of clone candidates
(has a low recall). Also, Bellon et al. reported a high precision for CLAN [2]
and found that CLAN was the most efficient when compared to the other five
CDTs they tested (it never required more than four seconds to detect clones).

Characteristic vectors in MBTs are usually applied for the sub-tree matching
and are used to detect Type III clones [23]. Aside from that the advantages and
limitations of the underlying source code representation apply. For example, if
ASTs are used to represent source code then the advantages and limitations of
TRBTs will apply.

3.6 Model Based Techniques

Model based techniques (MOBT) represent source code using higher level con-
cepts. For example, source code can be represented using unified modelling lan-
guage (UML) or the Matlab’s Simulink model11. Because usually these models
have graph-like representation, graph-based approaches can be applied for CD
in these models (see Section 3.4).

Deissenboeck et al. proposed a MOBT, CloneDetective/ConQAT, to detect
clones in large systems that are designed using Simulink [5]. In Simulink, a sys-
tem’s model consists of blocks (which usually correspond to sub-programs) and
interconnecting lines between these blocks. These lines specify data flow between
the blocks (sub-programs). In large models, there can be repetitive similar clus-
ters of blocks (similar blocks and interconnecting lines). Thus, CloneDetective
attempts to find these “cloned” block clusters. In the first step, CloneDetective
transforms a Simulink software system’s model into a graph. Every vertex in
this graph corresponds to a block and additionally stores block-type informa-
tion. Every edge in this graph corresponds to an interconnecting line and also
stores connection type information. Then the problem of CD in such a graph
boils down to finding isomorphic sub-graphs, similarly to Krinke’s “duplix” ap-
proach (see Section 3.4). As stated earlier, such a problem is NP-complete, thus
Deissenboeck et al. use a breadth-first search approximation algorithm to locate
isomorphic sub-graphs (similar to “duplix”, see Section 3.4) [5]. The authors
evaluated CloneDetective on a system containing approximately 4700 blocks
and manually inspected the resultant clones. They claimed that the resultant
clones are relevant for “practical purposes”.

The advantage of MOBTs is that they can operate at a higher level of ab-
straction: identify cloned software components/sub-systems. However, similarly

11https://fr.mathworks.com/products/simulink.html
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to PDGBTs these techniques can suffer from long execution times. Also, trans-
formation of source code into an abstract form (e.g. UML) may be required.

3.7 Hybrid Techniques

Hybrid CDTs (HT) can combine the type of source code representation and/or
the type of clone matching employed by the CDT types mentioned in the pre-
vious sections.

Leitao proposed a sub-program level HT, R2D2, to detect clones in software
systems written in Lisp language (though the author claims that R2D2 can be
extended to support other languages) [17]. R2D2 leverages TRBT and MBT to
support CD. The technique transforms the source code into an AST and uses a
series of specialized evaluations to compare two sub-programs: analysing iden-
tical forms, similar call sub-graphs, commutative operators, user-defined equiv-
alences and transformations into canonical syntactic forms [17]. After each
evaluation, evidence is obtained that two sub-programs are clones. This evi-
dence is accumulated and the final likelihood of two sub-programs being a clone
pair is estimated. The author applied R2D2 to SNePS legacy software sys-
tem of 65KLOC written in Lisp. The author reported quadratic running time
and claimed that the technique identified relevant clones (these were inspected
manually by the author).

More recently Keivanloo et al. proposed a HT, SeByte, to identify Type III
and Type IV sub-program level clones in Java bytecode [12]. SeByte is a com-
bination of a TKBT and a MBT. The input to the technique is a Java bytecode
file (compiled class file). In the first step, this bytecode file is transformed into a
token sequence, but only certain tokens are retained (Java type names and called
method names). The similarity between two sub-programs (represented as two
token sequences) is calculated using two types of analysis: pattern matching
and Jaccard coefficient. The first compares how similar are the two sequences
of tokens preserving the ordering of tokens in a sequence. The second (Jaccard
coefficient) calculates the ratio of token intersection between two sequences to
their union (the ordering is not important in this case). The resultant clone
pairs have to be above the specified similarity threshold. The authors used four
software systems to evaluate SeByte. They also compared SeByte to the four
other existing CDTs. The results indicated that the agreement rate between
SeByte and the other approaches was 70% in the best case and 30% in the
worst case.

HTs inherit advantages and limitations of CDTs that they combine. Thus,
for example, if HT is a combination of TKBT and MBT the advantages and
limitations of these approaches also apply to a HT.

4 Conclusions

In this report existing CDTs were reviewed with the ultimate goal of suggesting
a CDT(s) to be used as part of code re-unification in our industrial partner’s
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software systems: SystemA, SystemB, and SystemC. Three existing literature
reviews were used to identify CDTs proposed prior to 2012. Subsequently, ACM
and IEEE Xplore digital libraries were used to identify CDT papers published
after 2011. Of the pool of these CDTs, 13 were selected for detailed review.
These 13 CDTs were assigned to an appropriate CDT class (see Section 2.3)
and were reviewed within that class. The advantages and limitations for each
class of CDTs were outlined. Summarizing the most essential points, it seems
that:

• Detection of Type III and Type IV clones can still be a challenge for CDTs
and especially for some TXBTs and TKBTs.

• TRBTs, PDGBTs, and MOBTs require additional parsing/analysis of
source code that can be expensive.

• Time complexity of the algorithms employed by TRBTs, PDGBTs, and
MOBTs can be inadequate, in that they take too long as the body of code
scales up, and this can render these classes of CDTs inefficient for large
code bases.

The prior analysis of our industrial partner’s software systems (SystemA,
SystemB, SystemC)12 identified the characteristics of these systems that can
influence the recommendation for a CDT. Here these characteristics are re-
peated:

• Type III clones are the most prevalent across the three software systems
(SystemA, SystemB, and SystemC).

• The successful textual feature location in these systems suggested that
plentiful, meaningful source code comments exist (and to a lesser extent
identifiers).

• There are many source code irregularities (Fortran dialects, for example)
and a full parser for such code is not readily available and can be costly
to produce.

Based on these factors, an IR-based TXBT, similar to the TXBT proposed
by Marcus and Maletic [18], is recommended for CD in our industrial partner’s
software systems. Such an approach leverages textual data in source code and
has the following advantages:

• It can detect Type III and Type IV13 clones.

• It also requires very little or no parsing.

12This analysis was carried out prior to this report and presented to the team working on
code re-unification

13Given two different implementations, similar code comments can suggest semantic simi-
larity
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• The execution time is generally fast: the IR engine stores documents in
an index for fast retrieval.

One caveat to this approach is that there has been no evaluation of this
approach. However, its similarity to the feature location approach, that was
used in the first report and that has demonstrated high precision and recall,
can suggest that similar results can be achieved with the technique proposed in
this report.

Finally, this approach can be hybridised (similarly to the feature location
technique in the first report) to include structural information for CD.
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Appendix A: Listing and Classification of All CDTs
Reviewed by Bellon2007, Roy2007, and Rattan2013

Listing and Classification of All CDTs Reviewed by Bellon2007,
Roy2007, and Rattan2013

CDT/Author Bellon2007 Roy2007 Rattan2013
Classification
in this report

duploc [4] text [74] text [56] text text
Johnson [13] text [118,120] text [104] text text
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dup [1] token [18] text, token [7] token token
CCFinder [9] token [122] token [113] token token
Cordy [16] token [56] text [41] text text
Sim [17] token [90] token [67] tree token
Kontogiannis [2] metrics [146] metrics [132,133] metrics metrics
CLAN/Covet [3] metrics [144] metrics metrics
CLAN [12] metrics [178] metrics [170] metrics metrics
DiLucca [20]metrics [67] metrics [161] metrics metrics
Lanubile [21] metrics [161] metrics [146] metrics metrics
CloneDR [8] tree [31] tree [22] tree tree
Yang [22] tree [222] tree [231] tree tree
Duplix [10] pdg [156] pdg [138] pdg pdg
PDG-DUP [11] pdg [141] pdg [130] pdg pdg
Marcus [23] other [177] text [168] text text
Leitao [24] other [164] hybrid hybrid
CloneDetection [25] other [213] tree [226] tree tree
cp-miner [26] other [168,169] token [152] token token
RTF [24] token [16] token token
ccdiml [35] tree [19] tree tree
Asta [77] tree [58] tree tree
gplag [165] pdg pdg
Patenaude [190] metrics [179] metrics metrics
Dagenais [58] metrics [42] metrics metrics
Buss [45] metrics metrics
Davey [60] metrics metrics
clones/cscope [153] hybrid [134] token token
Tairas [206] hybrid [214] tree tree
Greenan [98] hybrid hybrid
Deckard [116] hybrid [100] tree tree
Similar Methods Classifier [22] hybrid [8] metrics metrics
Simian [207] text text
DuDe [228] text text
SDD [149] text text
CSeR [95] text text
NICAD [191] text text
EqMiner [102] text text
Barbour [13] text text
D-CCFinder [156,157] token token
SHINOBI [230] token token
FCFinder [199] token token
Jian-lin [103] token token
Chilowicz [35] token token
SimScan [208] tree tree
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Clone Digger [31,40] tree tree
ClemanX [176] tree tree
JCCD API [24] tree tree
cpdetector [134] tree tree
clast [59] tree tree
Chilowicz (tree-based) [36] tree tree
Saebjornsen [196] tree tree
Lee [150] tree tree
Brown [27] tree tree
Scorpio [84] pdg pdg
Choi [37] pdg pdg
Horwitz [85] pdg pdg
Li [154] metrics metrics
Antoniol [3,4] metrics metrics
Kodhai [129] metrics metrics
Perumal [180] metrics metrics
Lavoie [147] metrics metrics
CloneDetective/ConQAT [105,106] model model
ModelCD [49,182] model model
DuplicationDetector [155] model model
Mqlone [209] model model
Clone Detective [47] model model
Hummel [90] model model
Clone Miner [17] hybrid hybrid
MeCC [125] hybrid hybrid
Maeda [166] hybrid hybrid
Lucia [164] hybrid hybrid
Li (hybrid) [153] hybrid hybrid
Hummel (hybrid) [89] hybrid hybrid
Sutton [210] hybrid hybrid
Cordy (hybrid) [74] hybrid hybrid
DL Clone [202] hybrid hybrid
Corazza [40] hybrid hybrid

25


	Introduction
	Literature Review Process
	Identification of CDTs that Appeared before and Including 2011
	Identification of CDTs that Appeared after 2011
	Classification of CDTs in This Report
	Selecting CDTs for Detailed Review
	Clone Types
	Evaluation of CDTs

	Clone Detection Techniques
	Text Based Techniques
	Token Based Techniques
	Tree Based Techniques
	Program Dependency Graph Based Techniques
	Metrics Based Techniques
	Model Based Techniques
	Hybrid Techniques

	Conclusions

